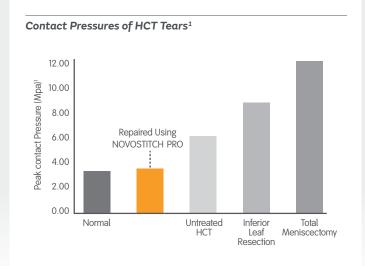

Smith-Nephew

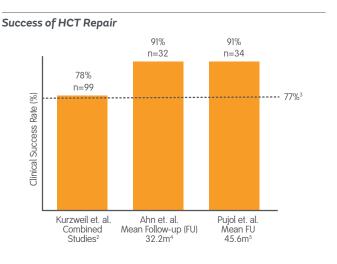
NOVOSTITCH^O PRO Meniscal Repair System

Clinical Background



For clinical videos visit smith-nephew.com/education

Horizontal Cleavage Tears (HCT)


Contact Pressures Increased by HCT

- Based on in vitro data, pressure from untreated tear increases contact pressures by 70%¹
- Studies have shown unfavorable results in leaflet resection improving contact pressures¹
- HCT repair normalizes contact pressures¹

Successful HCT Repair is Possible

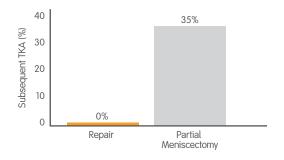
- 78% clinical success rate of HCT repair upon systematic review², similar to other tear types³
- 91% success rate in broad age range of patients (14-56) confirmed with 2nd look follow up⁴
- 91% success rate with MRI follow up⁵

Note: Clinical success rates were calculated for different techniques including: inside-out (IO), IO with bioabsorbabale and Biofix arrow anchors and open procedures. MRI follow-up success rate based on independent surgeon interpretations.

Circumferential Stitches Enable HCT Repair

- Technique articles from leading centers highlight NOVOSTITCH Meniscal Repair System proprietary Circumferential Compression Stitches (CCS) to repair HCTs^{6,7,8}
- Use of CCS eliminates posterior incision and minimizes risk of neurovascular injury⁶

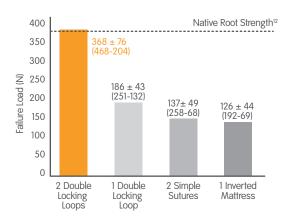
NOVOSTITCH PRO Meniscal Repair System Designed for HCT Repair


- Low profile (1.6mm) and retractable lower jaw facilitate access to peripheral meniscus⁹
- Curved upper jaw and retractable lower jaw enhance maneuverability for HCT repair vs. other repair methods⁹

Root Tears

Meniscectomy for Root Tears Increases Osteoarthritis (OA)

- 35% of meniscectomy patients in root tear study advanced to total knee arthroplasty (TKA) within 5 years¹⁰
- Meniscectomy to treat meniscal root avulsions leads to significant joint space narrowing within 5 years¹¹


TKA after Root Tear Treatment 10

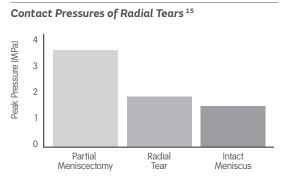
Stitch Construct Impacts Root Repair Strength

- Most often root repairs fail due to suture pulling through tissue ¹²
- One stitch with cross-fiber purchase and multiple points of fixation is stronger than two stitches without ^{12,13}
- Placing stitches 5-7mm from the edge of the meniscus generates stitches that are 38-78% stronger¹⁴

Root – Load to Failure 13

Successful Root Repair Possible

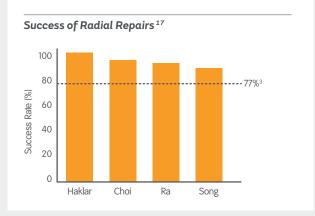
- 0% of root repair patients advanced to TKA within 5 years, compared to 35% for meniscectomy¹⁰
- Root repair patients had greater function, less pain, and greater joint space compared to patients who received meniscectomy ¹¹


NOVOSTITCH PRO Meniscal Repair System Enables Strong Root Construct

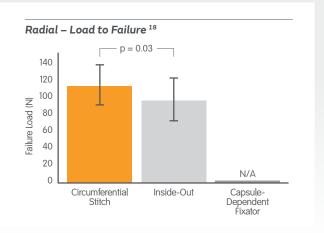
- Cartridges with size 0 suture enable stitches with two points of fixation to create a double modified locking loop without removing the device from the joint
- Curved upper jaw and retractable lower jaw enhance maneuverability for root repair

Radial Tears

Meniscectomy of Radial Tears Increases Contact Pressure


- Radial tears increase contact pressures within the knee¹⁵, and full-thickness radial tears render the meniscus nonfunctional¹⁶
- Meniscectomy of radial tears increases contact pressures by more than 100% over baseline¹⁵

Note: Study data acquired from cadaver knees.


Robust Radial Repairs Possible

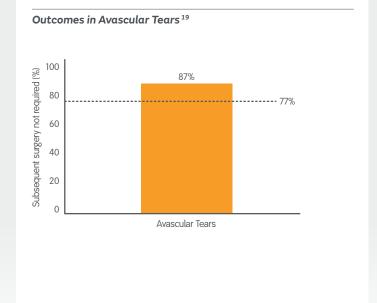
- 71-100% radial repair clinical success rates upon systematic review¹⁷ of follow-up results from included studies, similar to other tear patters³
- Outcomes of full-thickness radial repairs comparable to bucket handle repairs¹⁶

Strong Radial Repair with Circumferential Compression

- Based on in vitro data, Circumferential Compression Stitches (CCS) stronger than inside-out for radial repairs¹⁸
- CCSs have less gap formation than inside-out repair for radial tears¹⁸
- The CCS improves repair vectors for radial repairs by creating a stitch straight across the radial tear

Inside-Out Repair

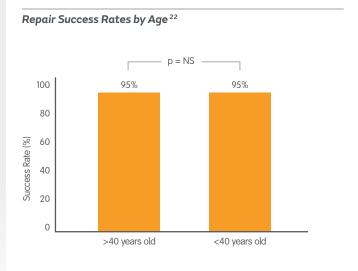
Circumferential Compression Stitch


NOVOSTITCH PRO Meniscal Repair System Designed for Radial Repair

- Low profile (1.6mm) and retractable lower jaw facilitate access to peripheral meniscus⁹
- Curved upper jaw and retractable lower jaw enhance maneuverability for radial repair vs. other repair methods⁹
- Cartridges enable placement of complete stitches without removing the device from the joint

Avascular Tears

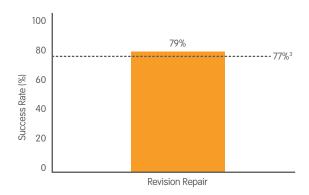
Repair of Avascular Tears Possible


- 87% of repaired tears extending into avascular zone were asymptomatic upon follow-up¹⁹
- Patients in the Noyes study were all 40+ years of age¹⁹

Older Patients

Age Doesn't Matter

- Two systematic reviews found no difference in repair success between patients over and under 40 years of age ^{20,21}
- Case review showed no difference in repair success in patients over and under 40 years of age²²
- Steadman also demonstrated a 94.7% success rate of repair in patients over 40²²



Revision Repairs

Successful Revision Repair Possible

- 79% of revision meniscus repairs were pain-free at a mean of 6 years follow-up²³
- Failure of repair still resulted in more tissue preservation and less tissue removal during secondary meniscectomy procedures^{23,24}

Repair Success in Revision Surgery 23

Notes	

Ordering information

Reference #	Description
CTX-A003	NOVOSTITCH™ PRO Meniscal Repair System (2-0)
CTX-A004	NOVOSTITCH PRO Meniscal Repair System (0)
CTX-R001	NOVOSTITCH Cartridge (2-0)
CTX-R002	NOVOSTITCH Cartridge (0)
CTX-C001	NOVOCUT Suture Manager

NOVOSTICH PRO Meniscal Repair System is available in New Zealand only.

Smith & Nephew Ltd Unit A 36 Hillside Rd Wairau Valley Auckland 0627 New Zealand T +64 9 820 2840 F +64 9 820 2841 The NOVOSTITCH PRO Meniscal Repair System is manufactured by Ceterix Orthopaedics, Inc., 6500 Kaiser Drive, Suite 120, Fremont, CA 94555, USA www.smith-nephew.com/new-zealand

♦Trademark of Smith & Nephew All Trademarks acknowledged SN14687 (09/19) Please consult product labels and inserts for any indications, contraindications, hazards, warnings, cautions and instructions for use.

References

1. Beamer B, Walley K, Okajima S, et al. Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection. Arthroscopy. 2017; 33(3):617-624. 2. Kurzweil P, Lynch N, Coleman S, Kearney B. Repair of Horizontal Meniscus Tears: A Systematic Review. Arthroscopy. 2014; 30(11):1513-9. 3. Nepple J, Dunn W, Wright R. Meniscal Repair Outcomes at Greater Than Five Years. JBJS. 2012; 94 (24):2222. 4. Ahn JH, Kwon OJ, Nam TS. Arthroscopic Repair of Horizontal Meniscal Cleavage Tears With Marrow-Stimulating Technique. Arthroscopy. 2014; 31(1):92-8. 5. Pujol N, Salle De Chou E, Boisrenoult P, Beaufils P. Platelet-rich plasma for open meniscal repair in young patients: Any benefit? KSSTA. 2015; 23(1):51-8. 6. Woodmass J, Johnson J, Wu I, Saris D, Stuart M, Krych A. Horizontal Cleavage Meniscus Tear Treated With All-inside Circumferential Compression Stitches. Arthroscopy. 2017; 6(4):e1329-e1333. 7. Laidlaw M, Gwathmey F. Circumferential Suture Repair of Isolated Horizontal Meniscal Tears Augmented With Fibrin Clot. Arthroscopy. 2017; 6(5):e1567-e1572. 8. Brooks K. Vertical Lasso and Horizontal Lasso Sutures for Repair of Horizontal Cleavage and Horizontal Oblique Meniscal Tears: Surgical Technique and Indications. Arthroscopy, 2017; 6(5):e1767-e1773. 9. Saliman J. Circumferential Compression Stitch for Meniscus Repair. Arthroscopy Tech. 2013; 2(3); e257-262. 10. Chung K, Ha J, Yeom C, et al. Comparison of Clinical and Radiologic Results Between Partial Meniscectomy and Refixation of Medial Meniscus Posterior Root Tears: A Minimum 5-Year Follow-up. Arthroscopy. 2015; 31(10):1941-1950. 11. Kim S, Ha J, Lee S, et al. Medial Meniscus Root Tear Refixation: Comparison of Clinical, Radiologic, and Arthroscopic Findings With Medial Meniscectomy. Arthroscopy. 2011; 27(3):346-354. 12. Mitchell R, Pitts R, Kim YM, Matava M. Medial Meniscal Root Avulsion: A Biomechanical Comparison of 4 Different Repair Constructs. Arthroscopy. 2015; 29(6):e32. 13. Anz A, Branch E, Saliman J. Biomechanical Comparison of Arthroscopic Repair Constructs for Meniscal Root Tears. AJSM. 2014; 42(11):2699. 14. Kim YM, Joo YB, Noh C, Park II. The Optimal Suture Site for the Repair of Posterior Horn Root Tears: Biomechanical Evaluation of Pullout Strength in Porcine Menisci. KSRR. 2016; 28(2):147-152. 15. Bedi A, Kelly N, Baad M, et al. Dynamic Contact Mechanics of the Medial Meniscus as a Function of Radial Tear, Repair, and Partial Meniscectomy. JBJS. 2010; 92(6):1398-408. 16. Wu I, Hevesi M, Desai V, et al. Comparative Outcomes of Radial and Bucket-Handle Meniscal Tear Repair. AJSM. 2018; 46(11):2222. 17. Moulton S, Bhatia S, Civitarese D, et al. Surgical Techniques and Outcomes of Repairing Meniscal Radial Tears: A Systematic Review. Arthroscopy. 2016; 22(5):400-404. 18. Beamer B, Masoudi A, Walley K, et al. Analysis of a New All-Inside Versus Inside-Out Technique for Repairing Radial Meniscal Tears. Arthroscopy. 2015; 31(2):293-8. 19. Noyes F, Barber-Westin S. Arthroscopic Repair of Meniscus Tears Extending Into the Avascular Zone With or Without Anterior Cruciate Ligament Reconstruction in Patients 40 Years of Age and Older. Arthroscopy, 2000; 16(8):822-9. 20. Rothermel S, Smuin D, Dhawan A. Are Outcomes After Meniscal Repair Age Dependent? A Systematic Review. Arthroscopy. 2017; 34(3):979-987. 21. Everhart J, Higgins J, Poland S, Abouljoud M, Flanigan D. Meniscal repair in patients age 40 years and older: A systematic review of 11 studies and 148 patients. Knee. 2018; 25(6):1142-1150. 22. Steadman J, Matheny L, Singleton S, et al. Meniscus Suture Repair: Minimum 10-Year Outcomes in Patients Younger Than 40 Years Compared With Patients 40 and Older. AJSM. 2015; 43(9):2222-7. 23. Krych A, Reardon P, Sousa P, et al. Clinical Outcomes After Revision Meniscus Repair. Arthroscopy. 2016; 32(9):1831-7. 24. Pujol N, Barvier O, Boisrenoult P, Beaufils P. Amount of Meniscal Resection After Failed Meniscal Repair. AJSM. 2011;39(8):1648-1652.