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CONCELOC◊

Advanced Porous Titanium



CONCELOC◊ 
Advanced Porous Titanium
Customized, proprietary porous 
structure technology
Through our pioneering approach to design, 
Smith+Nephew engineers have developed a 
proprietary method for creating a fully randomized 
porous structure with predictable porosity, pore size 
and node interconnectivity. Devices incorporating the 
patented CONCELOC Advanced Porous Titanium are 
created in a virtual environment and then fabricated 
at Smith+Nephew via additive manufacturing. 

Design flexibility
Additive manufacturing (AM), commonly referred to as 3D printing, is a novel manufacturing method that involves 
the use of a laser or electron beam, for example, to sinter polymer or metal powders into a solid part that is built 
layer-by-layer. This unique fabrication method provides greater design flexibility compared to standard, subtractive 
manufacturing, i.e., machining. AM has also enabled Smith+Nephew to develop this custom porous structure for 
biological fixation combined with complex device geometries that would be difficult, expensive or impractical to 
attain through conventional fabrication methods. This design flexibility was leveraged to produce a roughened 
texture that is mapped on to the bone-interfacing surfaces of the virtual models to provide friction for enhanced 
initial stability. Furthermore, solid reinforcements can be added as an integral part of the porous structure where 
desired, since both solid and porous features are fabricated layer-by-layer at the same time.

Material
CONCELOC is made from Ti-6Al-4V and meets the ASTM and ISO standards for that alloy, with a good clinical 
history and over 40 years of use in medical devices.1-4

Porosity
CONCELOC Advanced Porous Titanium has an interconnected network of pores with an average porosity of 80% 
in the near-surface regions where the initial fixation will occur, and an average overall porosity of 63%.5 These 
porosities are within the range of 60-80% porosity reported for other advanced porous structures.6-9

Pore size
CONCELOC has pore sizes greater than 100 μm, which the literature suggests is beneficial to biological 
fixation.10-12  CONCELOC Advanced Porous Titanium has an average pore size that ranges from 202 to 342μm 
overall and from 484 to 934μm at the surfaces of the porous structure.5,13



Mechanical  properties*

Material properties*

* Data for competitive porous structures was obtained from the referenced literature with test methods that differ between porous structures. Data is 
tabulated for general comparisons only. 

**Ti-6Al-4V substrate with coating.
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Figure 3: Compressive fatigue strength of the CONCELOC 
Advanced Porous Technology19 compared to that reported for 
Trabecular Metal.18 

Figure 1: Compressive modulus measured for the CONCELOC◊ 
Advanced  Porous Technology14 compared to values reported for 
cancellous15 and cortical16 bone. 

Figure 2: Compressive yield strength of the CONCELOC 
Advanced Porous Technology17 compared to that reported for 
Trabecular Metal.18

Figure 4: Coefficient of friction of CONCELOC Advanced Porous 
Technology20 compared to that reported for STIKTITE20 porous coating 
and Trabecular Metal.21

The CONCELOC and STIKTITE◊ porous structures were tested against 
10 lb/ft (0.16 g/cm) foam.11 The test method for these porous 
structures differed from that used for Trabecular Metal that was 
tested against cancellous bone.

CONCELOC STIKTITE Trabecular Metal Tritanium Regenerex Gription

Material Titanium Alloy CP Titanium Tantalum23 CP Titanium23 Titanium Alloy24 CP Titanium6

Modulus of Elasticity 4.3 GPa14 113 GPa**25 1.3-3.9 GPa18,26 113 GPa**25 1.9 GPa24 113 GPa**25

Compressive 2% Yield Stress 101.2 MPa17 N/A 36.9 MPa18 N/A N/A N/A

Porosity Up to 80%5 62%27 80%22 72%28 67%24 63%29

Pore Size (Ave) 202-934µm5,13 194µm27 430µm21 311-546µm28 100-600µm24 300µm29

Coefficient of Friction 0.9520 0.9320 0.8821 1.0128 N/A 1.26

Porous Matrix or Coating Porous Matrix Coating Porous Matrix Both Both Coating
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