

+ Evidence in focus

Interactive compendium of clinical evidence

POLAR3^o Total Hip Solution

February 2024

Smith-Nephew

Smith+Nephew POLAR3^o Total Hip Solution

Key evidence

All evidence

.....

Product summaries

Interactivity has been included throughout the compendium to aid navigation

) will bring you back to this menu page

will take you to a bibliography of all clinical evidence

Banners at the bottom of each page will take you to previous or subsequent pages, as indicated

Key evidence is represented in **blue** and supporting evidence in **brown**

THA — the "operation of the century"?

Due to recent technical and surgical advancements, THA is now one of the most cost-effective and consistently successful surgeries performed in orthopaedics^{1,2}

Important recent advances include:1

Less invasive surgical procedures

Improved tissue preservation

Improved wear resistance and biocompatibility of biomaterials

Improved knowledge and restoration of hip anatomy and function

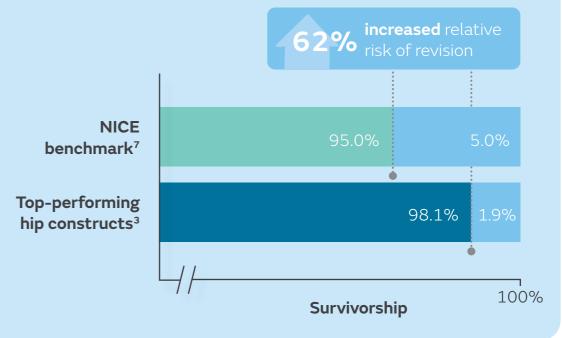
Reduced blood loss and surgical complications

Improved pre-operative management and post-operative pain control

THA provides reliable outcomes for patients with osteoarthritis, and excellent long-term postoperative clinical outcomes:²

(AOANJRR)⁴

(LROI)⁵


 $(NJR)^{3}$

Despite these positive outcomes, wide variety in the performance of different types of hip constructs remains and implant choices can result in considerable reductions in revision risk^{3,6}

UK NICE guidelines recommend that prostheses for THA in patients with end-stage arthritis should have revision rates (or projected rates) of 5% or less at 10 years⁷

However, the current NICE benchmark of 5% represents a 62% higher 10-year revision risk compared with top performing hip constructs on the market, which have revision rates as low as 1.9%^{3,6,7}

The risk and impact of revision — is there room for improvement?

Risk factors for revision

Several factors influence primary THA revision risk. Limitations of hip constructs combine with patient- and surgeon-related factors to contribute to overall risk^{3,4,8-13}

Implant positioning and different bearing materials can also contribute to overall revision risk $^{\rm 8,14-22}$

Aseptic loosening (#1 reason for revision reported in the NJR)³

The proportion of revisions attributed to aseptic loosening ranges from 20.8% in the AOANJRR to 24.8% in the NJR^{3,4}

Higher revision rates due to loosening are associated with smaller cementless stems and certain variants of stem design^{9,10}

Dislocation

(#2 reason for revision reported in the NJR)³

The proportion of revisions attributed to dislocation ranges from 16.8% to 21.7% across registries $^{\rm 3-5,11}$

Implant positioning

Acetabular positioning can influence overall implant survival, joint stability, muscle function, range of motion, wear and functional outcomes¹⁴

Choice of bearing material

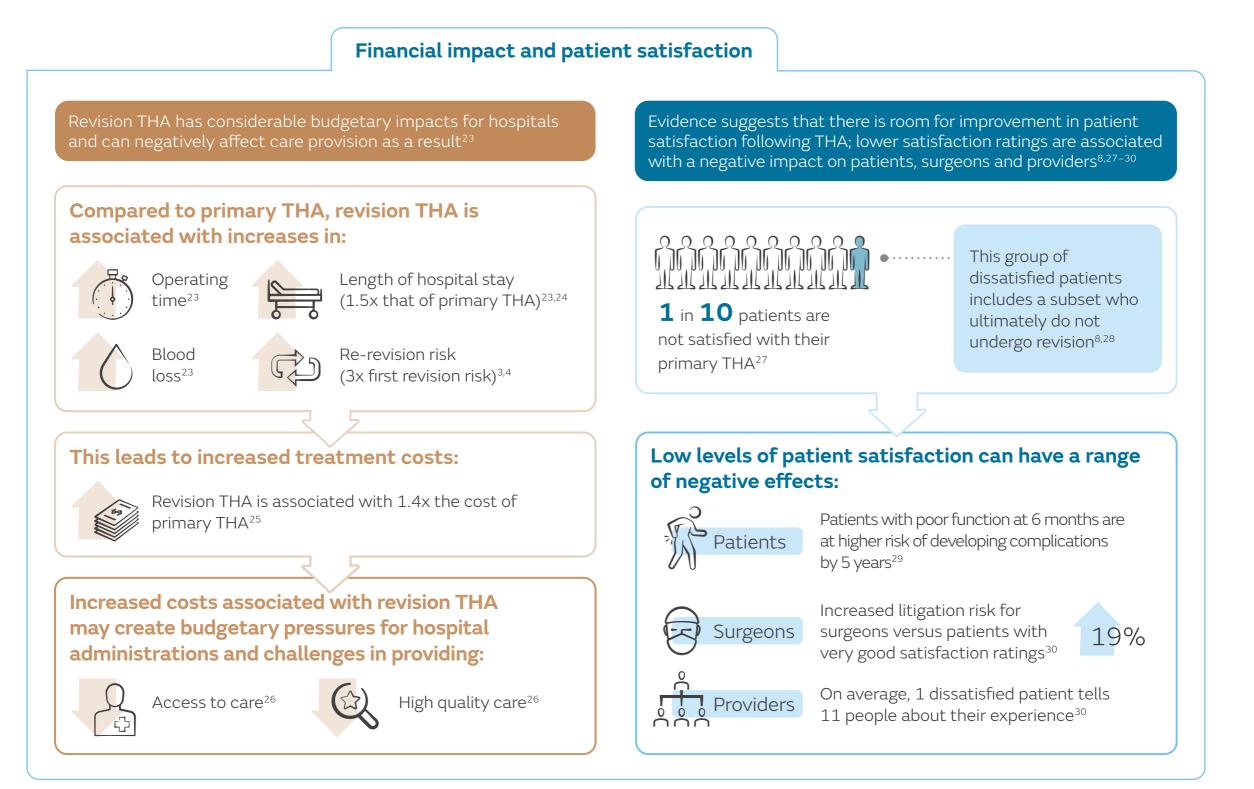
CoC

4x risk of implant fracture (vs MoXLPE)^{8,15}

Up to 30% incidence of implant noise^{8,16}

6x earlier time to revision due to dislocation relative to Metal on polyethylene (MoPE)¹⁷

CoXLPE


Fracture risk may remain with fourth generation ceramics¹⁸ Up to 33% risk of phase transformation^{19,20}

MoXLPE

67% higher volumetric wear (vs ceramicised metal)²¹

3.2% symptomatic mechanically assisted crevice corrosion (MACC) present²²

The risk and impact of revision — is there room for improvement?

Importance of implant choice

Improved survival rates are associated with choice of hip replacement, in addition to factors such as the skill of the surgeon and the setup of the hospital.¹ To achieve optimal survival results, the use of implants with evidence of good long-term survival should be encouraged⁶

POLAR3 is uniquely differentiated from other constructs. POLARSTEM[•]/R3[•] delivers the highest survivorship of any cementless hip combination,³ and with OXINIUM[•]/XLPE, it delivers superior PROMs and higher than class average patient satisfaction³¹

POLAR3 (POLARSTEM, OXINIUM/XLPE, R3 cup)

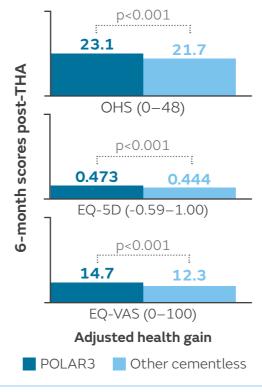
Survivorship

POLARSTEM/R3 delivers high survivorship compared with other cementless hip combinations $^{\rm 3}$

This corresponds to a **62%** lower revision risk relative to the 5% NICE benchmark^{3,7} results in significantly lower incidences of aseptic cup (67%; p<0.05)³¹ and stem loosening (64%; p<0.05)³¹

POLAR3

OXINIUM/XLPE delivers the highest survivorship of all bearing combinations in the UK, reducing concerns around revision risk with other bearing options¹⁵



OXINIUM/XLPE demonstrated survivorship of **98.04%** at 10 years¹⁵

This corresponds to a **60%** lower revision risk relative to the 5% NICE benchmark^{7,15} OXINIUM/XLPE is also associated with a reduced risk of longterm complications, such as implant fracture, MACC and wear potential^{21, 32-37}


PROMs and patient satisfaction

POLAR3 is associated with significantly greater improvements in PROMs and higher than class average patient satisfaction when compared with other cementless combinations³¹

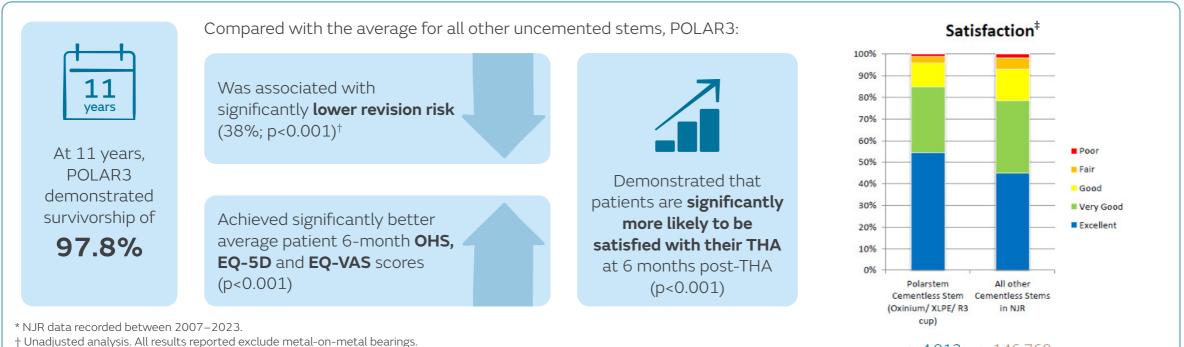
RI.HIP NAVIGATION

Hip navigation technology in THA improves the accuracy of acetabular component positioning, resulting in reduced risk of revision compared with conventional THA^{38,39}

RI.HIP NAVIGATION does not require a CT scan, limiting disruption of the standard patient pathway

National Joint Registry for England, Wales and Northern Ireland: POLARSTEM Cementless (Oxinium/XLPE/R3 cup) implant summary report. October 20, 2023³¹

Overview



25,619 THAs with POLARSTEM^o588,183 THAs with other uncemented stems

Assessed		11			6	
at:		years			months	
	Sı	ırvivorsh	ip	PROM	ls/Satisf	action

Results

n=4,913 n=146,768

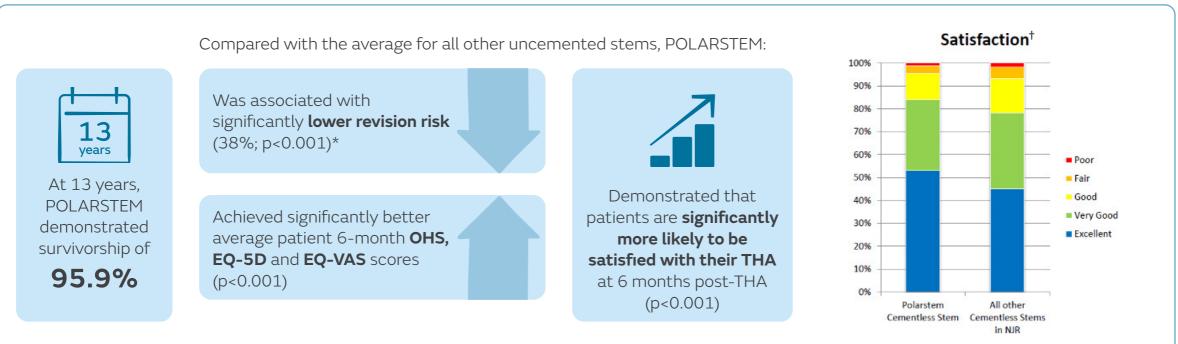
Conclusion

POLAR3 showed excellent 11-year survivorship and a significantly lower risk of revision compared to the average for other uncemented stems. At 6 months, patients reported higher satisfaction, increased hip functionality, and improved quality of life.

‡ Answer to 6-months general health question: How would you describe the results of your operation?

National Joint Registry for England, Wales and Northern Ireland: POLARSTEM Cementless implant summary report. November 8, 2023⁴⁰

Overview



32,499 THAs with POLARSTEM⁶591,482 THAs with other uncemented stems

Results

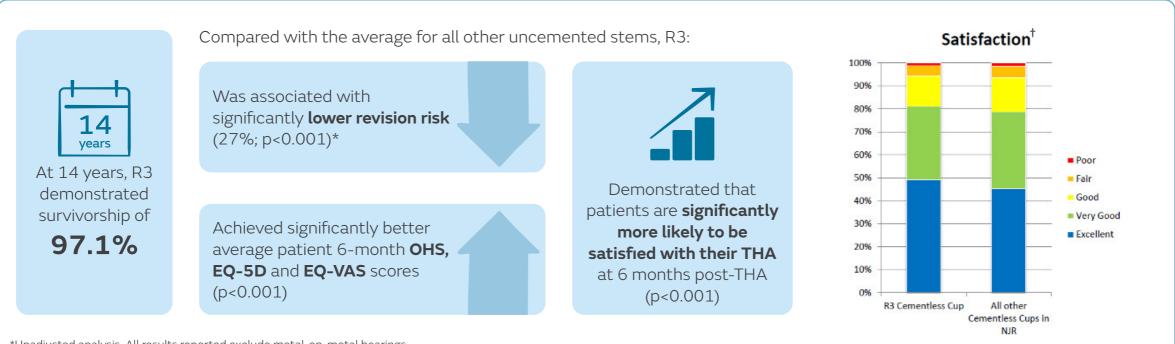
*Unadjusted analysis. All results reported exclude metal-on-metal bearings. †Answer to 6-months general health question: How would you describe the results of your operation?

n=6,554 n=146,767

Conclusion

POLARSTEM showed excellent 13-year survivorship and a significantly lower risk of revision compared to the average for other uncemented stems. At 6 months, patients reported higher satisfaction, increased hip functionality, and improved quality of life.

National Joint Registry for England, Wales and Northern Ireland: R3 Cementless cup implant summary report. November 8, 2023⁴¹


Overview

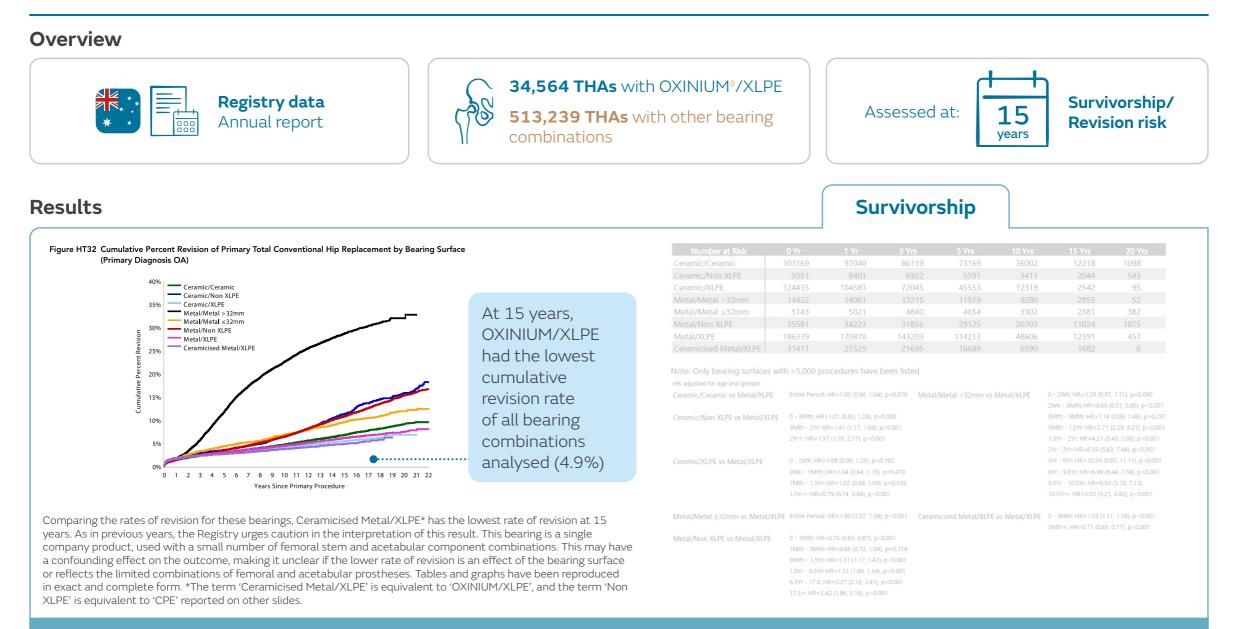
51,567 THAs with R3^o **994,607 THAs** with other uncemented stems

	<u> </u>	1			
Assessed at:	14 years			6 months	
	Survivorsh	ı nip	PROM	s/Satisf	action

Results

*Unadjusted analysis. All results reported exclude metal-on-metal bearings. †Answer to 6-months general health question: How would you describe the results of your operation?

n=12,297 n=218,550


Conclusion

R3 showed excellent 14-year survivorship and a significantly lower risk of revision compared to the average for other uncemented cups. At 6 months, patients reported higher satisfaction, increased hip functionality, and improved quality of life.

Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) Hip, Knee & Shoulder Arthroplasty: 2023 Annual Report⁴

Available at: https://aoanjrr.sahmri.com/annual-reports-2023. Accessed October 30, 2023.

Conclusion

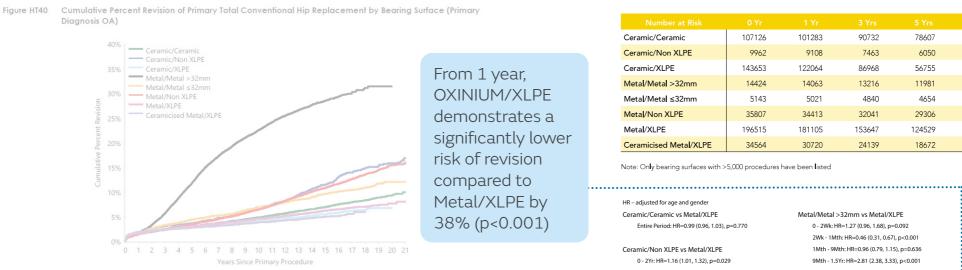
OXINIUM/XLPE was associated with excellent 15-year survivorship.

Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) Hip, Knee & Shoulder Arthroplasty: 2023 Annual Report⁴

Available at: https://aoanjrr.sahmri.com/annual-reports-2023. Accessed October 30, 2023.

Overview

Assessed at: 15


years

Survivorship/ **Revision risk**

Revision risk

Results

Conclusion

Ceramic/Ceramic	107126	101283	90732	78607	41948	14629	2623
Ceramic/Non XLPE	9962	9108	7463	6050	3541	2150	784
Ceramic/XLPE	143653	122064	86968	56755	15458	3377	286
Metal/Metal >32mm	14424	14063	13216	11981	9306	4165	100
Metal/Metal ≤32mm	5143	5021	4840	4654	3954	2651	787
Metal/Non XLPE	35807	34413	32041	29306	20949	11722	3369
Metal/XLPE	196515	181105	153647	124529	56134	15691	1385
Ceramicised Metal/XLPE	34564	30720	24139	18672	8012	2230	0

Metal/Metal >32mm vs Metal/XLPE

0 - 2Wk; HR=1,27 (0.96, 1.68), p=0.092

2Wk - 1Mth: HR=0.46 (0.31, 0.67), p<0.001

1Mth - 9Mth: HR=0.96 (0.79, 1.15), p=0.636

9Mth - 1.5Yr: HR=2.81 (2.38, 3.33), p<0.001

1.5Yr - 2Yr: HR=4.40 (3.66, 5.29), p<0.001

2Yr - 3Yr: HR=6.46 (5.72, 7.29), p<0.001

3Yr - 8Yr: HR=9.45 (8.90, 10.02), p<0.001

8Yr - 10Yr: HR=5.92 (5.28, 6.63), p<0.001

10Yr - 12Yr: HR=4.86 (4.29, 5.51), p<0.001

12Yr+; HR=3.35 (2.97, 3.77), p<0.001

Note: Only bearing surfaces with >5.000 procedures have been listed

HR – adjusted for age and gende Ceramic/Ceramic vs Metal/XLPE Entire Period: HR=0.99 (0.96, 1.03), p=0.770

Ceramic/Non XLPE vs Metal/XLPE 0 - 2Yr: HR=1.16 (1.01, 1.32), p=0.029 2Yr - 3.5Yr: HR=1.48 (1.15, 1.91), p=0.002

3.5Yr - 5Yr: HR=0.85 (0.58, 1.24), p=0.388 5Yr - 8Yr: HR=1.50 (1.18, 1.89), p<0.001 8Yr+: HR=2.67 (2.37, 3.01), p<0.001

Ceramic/XLPE vs Metal/XLPE 0 - 2Yr: HR=1.01 (0.97, 1.06), p=0.562 2Yr+: HR=0.77 (0.72, 0.82), p<0.001

Metal/Metal ≤32mm vs Metal/XLPE Entire Period: HR=1.42 (1.30, 1.56), p<0.001 Metal/Non XLPE vs Metal/XLPE

0 - 1Mth; HR=0.73 (0.62, 0.85), p<0.001 1Mth - 6Mth: HR=0.89 (0.77, 1.03), p=0.120 6Mth - 3.5Yr; HR=1.41 (1.30, 1.54), p<0.001 3.5Yr - 5Yr: HR=1.57 (1.36, 1.80), p<0.001 5Yr - 7Yr: HR=1.73 (1.53, 1.96), p<0.001 7Yr - 10Yr: HR=2.13 (1.93, 2.37), p<0.001 10Yr+: HR=2.56 (2.38, 2.76), p<0.001

Ceramicised Metal/XLPE vs Metal/XLPE 0 - 6Mth; HR=1.16 (1.06, 1.27), p=0.001 6Mth - 1Yr: HR=1.04 (0.85, 1.28), p=0.694 1Yr+: HR=0.62 (0.56, 0.69), p<0.001

a confounding effect on the outcome, making it unclear if the lower rate of revision is an effect of the bearing surface or reflects the limited combinations of femoral and acetabular prostheses. Tables and graphs have been reproduced in exact and complete form. *The term 'Ceramicised Metal/XLPE' is equivalent to 'OXINIUM/XLPE', and the term 'Non XLPE' is equivalent to 'CPE' reported on other slides.

Comparing the rates of revision for these bearings, Ceramicised Metal/XLPE* has the lowest rate of revision at 15

company product, used with a small number of femoral stem and acetabular component combinations. This may have

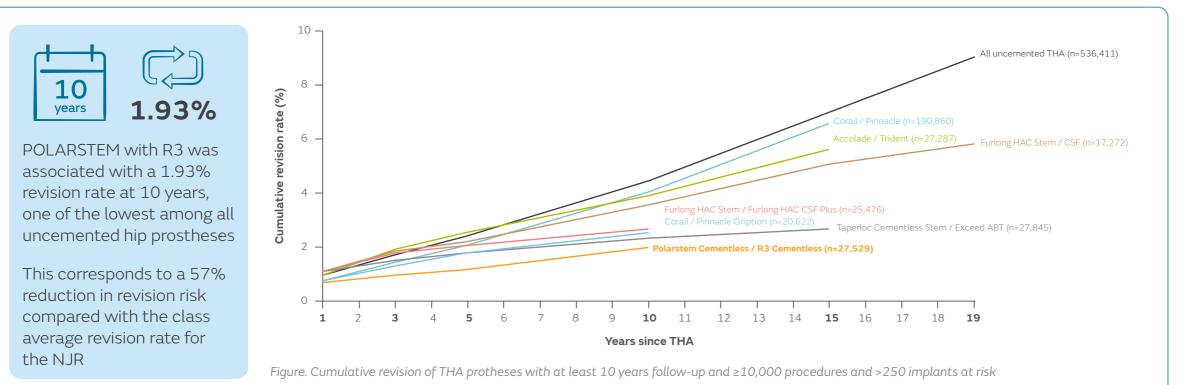
years. As in previous years, the Registry urges caution in the interpretation of this result. This bearing is a single

OXINIUM/XLPE was associated with the lowest risk of revision of all bearing combinations analysed.

National Joint Registry for England, Wales and Northern Ireland: 20th Annual Report³

Available at: https://reports.njrcentre.org.uk. Accessed December 8, 2023.

Overview

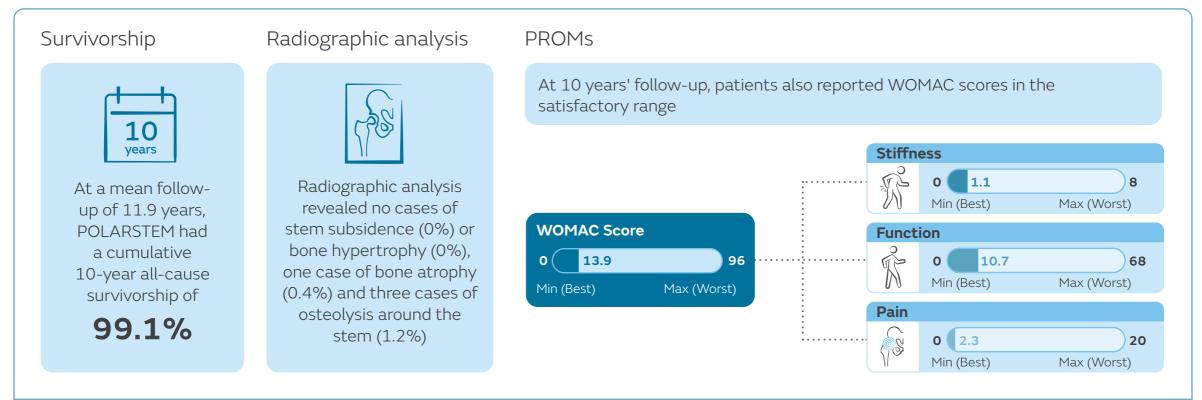


Results

*NJR data recorded between 2003–2023.

Conclusion

POLARSTEM with R3 demonstrates one of the highest survivorship rates of all uncemented hip constructs at 10 years, with a 1.93% revision rate.


Long-term outcomes of a dual-mobility cup and cementless triple-taper femoral stem combination in total hip replacement: a multicenter retrospective analysis⁴²

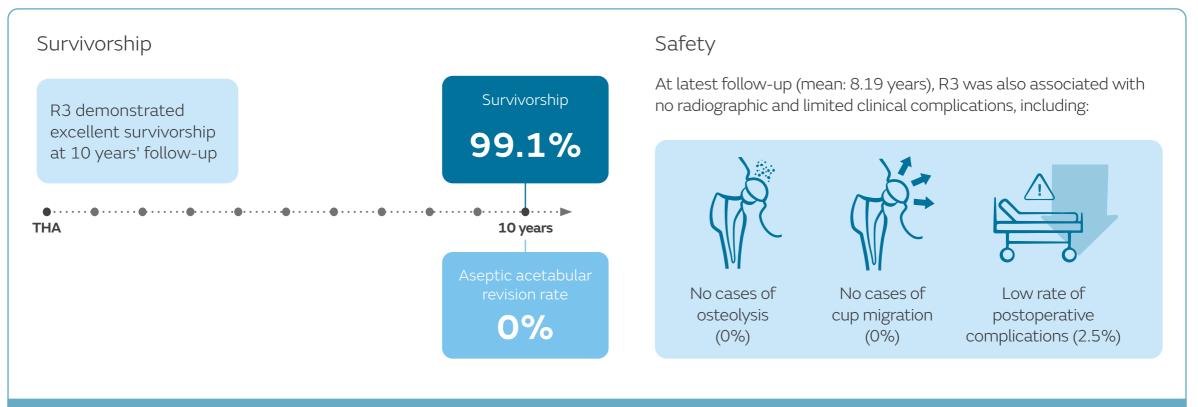
Cypres A, Fiquet A, Girardin P, et al. J Orthop Surg Res. 2019;14:376.

Overview

Results

Conclusion

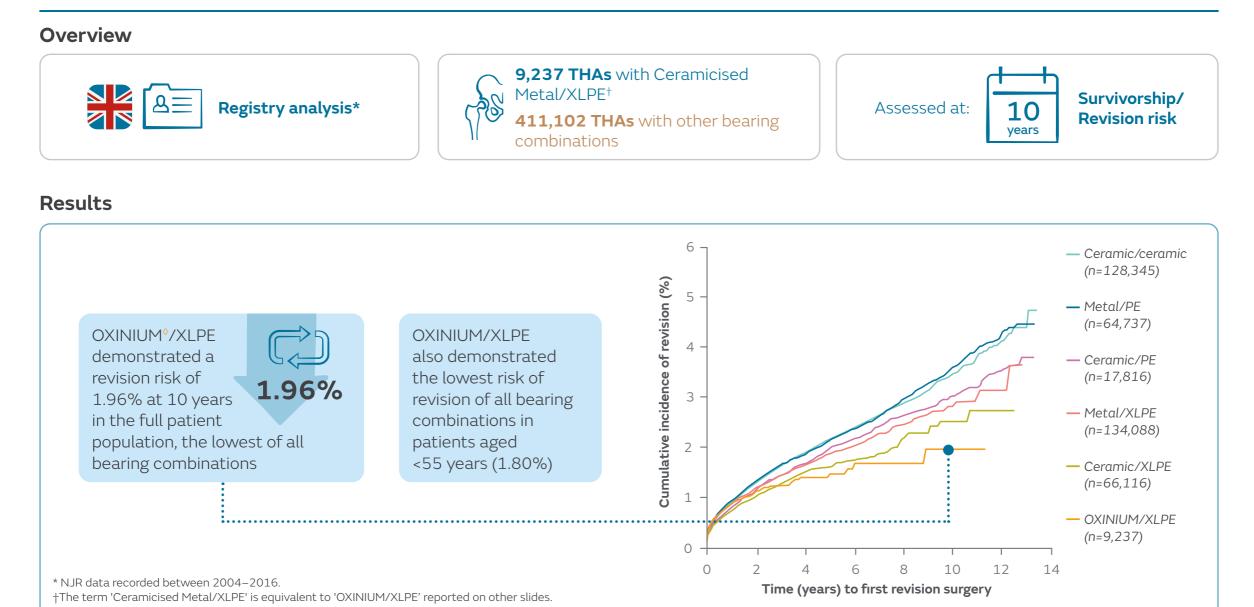
POLARSTEM was associated with excellent 10-year survivorship along with strong radiographic outcomes, and patients that received this implant reported satisfactory WOMAC scores at 10 years of follow-up.


Excellent mid-term outcomes with a hemispheric titanium porous-coated acetabular component for total hip arthroplasty: 7-10 year follow-up⁴³

Yeroushalmi D, Singh V, Maher N, Gabor JA, Zuckerman JD, Schwarzkopf R. *Hip Int.* 2021 Aug 19. doi: 10.1177/11207000211040181.

Overview

Results


Conclusion

R3 was associated with excellent mid-term survivorship and clinical outcomes, with no radiologically observed cup migration or osteolysis and very low postoperative complication rates.

Effect of bearing surface on survival of cementless and hybrid total hip arthroplasty¹⁵

Davis ET, Pagkalos J, Kopjar B. J*BJS OA.* 2020:5:e0075.

Conclusion

OXINIUM/XLPE was associated with the lowest revision risk at 10 years (1.96%) of all bearing combinations analysed.

Mid-term clinical results of the cementless R3 cup and Polarstem total hip arthroplasty $^{\rm 44}$

Assaf A, Manara JR, Teoh KH, Evans AR. Eur J Orthop Surg Traumatol. 2019;29:827–833.

Overview

Results

A cumulative all-cause surv	vivorship of 97.69%	
A mean OHS of 38 (range: 8	8–48, with 8 being the worst and 48 the best)	

Conclusion

POLARSTEM with R3 demonstrated excellent mid-term outcomes after 7 years, with high cumulative survivorship, as well as good radiographic and patient-reported functional outcomes.

The effect of bearing type on the outcome of total hip arthroplasty⁴⁵

Peters RM, Van Steenbergen LN, Stevens M, Rijk PC, Bulstra SK, Zijlstra WP. Acta Orthop. 2018:89;163–169.

Overview

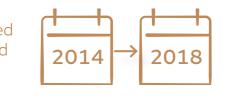
Results

When compared with MoPE, MoXLPE, CoPE, CoXLPE, and CoC, OXINIUM/(XL)PE ⁺ resulted in:	
The highest all-cause survivorship at 5 (97.5%) and 9 years (96.5%)	
When compared with Metal/PE bearings, OXINIUM/(XL)PE* was associated with:	
A 19% lower risk of revision (p<0.05)	
* Registry data recorded between 2007–2016. † Due to small group sizes, OXINIUM on standard PE or XLPE were analysed together, with results for OXINIUM/(XL)PE representing grouped data for OXINIUM bearings on XLPE or PE.	
Conclusion	
OXINIUM/(XL)PE demonstrated the highest 5- and 9-year survivorship when compared with several other bearing types, and a significantly lower revision risk when compared with Metal/PE bearings.	

Can the choice of cementless implants and bearings during total hip arthroplasty have an impact on the overall costs within a bundled payment model?⁴⁶

Duncan S, Patel A, Delhougne G, Patrick C. J Hip Surg. 2020;4:66–76.

Overview



Health economic data Retrospective US database analysis

818 THAs with POLARSTEM⁶/R3⁶ and OXINIUM⁶ bearing;
2,454 THAs with other cementless hip systems and ceramic bearings

Analysis included THAs performed between:

Results

When compared with non-OXINIUM bearings, THA with OXINIUM bearings was associated with:	
Significantly lower mean LOS (1.61 vs 2.06 days, respectively; p<0.0001) and 30-day readmission rate (1.88 vs 3.31%; p=0.0399)	
A small increase (4%) in mean hospital costs (\$15,611 vs \$15,002; p=0.0039)	A STATE
A significantly greater likelihood for patients to be discharged to home/home health care (OR: 1.36; 95% CI: 1.07, 1.72; p=0.0112), and a lower likelihood of patients being discharged to an SNF (OR: 0.82; 95% CI: 0.63, 1.06; p=0.1235)	
A significantly lower likelihood of patients requiring a blood transfusion (OR: 0.16; 95% CI: 0.09, 0.29; p<0.0001)	\bigcirc

Conclusion

THA with POLARSTEM/R3 and OXINIUM bearings was associated with improved short-term clinical outcomes relative to other cementless hip systems with ceramic bearings. Reduced LOS and lower rates of discharge to SNF may result in cost savings overall in bundled payment systems despite a small increase in total hospital costs.

Functional and radiological outcome of uncemented total hip arthroplasty in young adults — 5 year follow-up 47

Wade R, Shah KA. *J Orthop.* 2019;18:237-239.

Overview

Results

to carry out 'strenuous' or 'moderate' manual labour (80%)	
No major postoperative complications	
No femoral or acetabular component loosening, and neutral femoral stem alignment in the majority (82%) of hips	The second se

THA with POLAR3 delivers strong medium-term functional and radiological outcomes in younger patients, and low complication rates.

A comparative study between uncemented and hybrid total hip arthroplasty in octogenarians $^{\rm 48}$

Ahmad A, Mirza Y, Evans AR, Teoh KH. J. Arthroplasty. 2018;33:3719–3723.

Overview

Clinical data Single-centre study of octogenarians (mean age: 86.2 years)

143 THAs (76 with POLARSTEM[•]/ R3[•]; **67** with hybrid [Exeter* cemented stem/Trilogy Cup[†]])

Results

Significantly lower intraoperative complication (p=0.017) and transfusion (p=0.002) rates	\bigtriangledown
No significant difference in average hospital stay (11 vs 12 days; p=0.27)	
Similar revision rates (two revisions in each cohort)	
A similar degree of improvement in mean OHS from preoperative scores to final follow-up (22 to 40 vs 24 to 38, respectively)	

*Exeter cemented stem is a trademark of Stryker. $^{+}$ Trilogy Cup is a trademark of Zimmer.

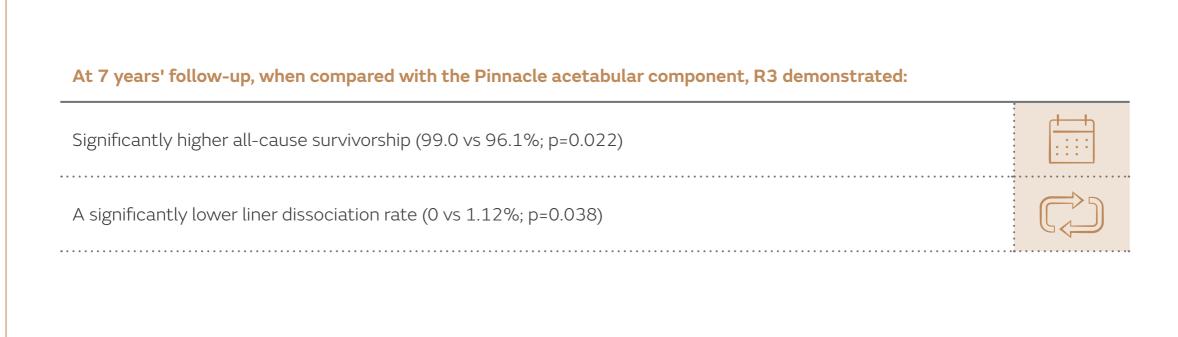
Conclusion

POLARSTEM with R3 delivers safety comparable to hybrid THA for elderly patients, with lower complication and transfusion rates, and similar revision rates.

Acetabular liner dissociation: a comparative study of two contemporary uncemented acetabular components⁴⁹

Gwynne-Jones DP, Memon A. Arthroplast Today. 2020;6:354–359.

Overview


Clinical data Single-centre, retrospective, comparative study

961 THAs (426 with R3°/XLPE; 535 with Pinnacle*/Marathon)

Results

*Pinnacle is a trademark of Depuy Synthes.

Conclusion

R3 was associated with higher 7-year survivorship and lower rates of revision and liner dissociation, when compared with the Pinnacle acetabular component.

R3 cup does not have a high failure rate in conventional bearings: a minimum of 5-year follow-up $^{\rm 50}$

Teoh KH, Whitham RDJ, Golding DM, Wong JF, Lee PYF, Evans AR. J Arthroplasty. 2018;33:460–463.

Overview

Clinical data Single-centre, retrospective analysis

293 THAs (283 with POLARSTEM[°]/R3°; 10 with hybrid)

Results

A survivorship of 98.9%	
An improvement in mean OHS versus preoperative scores (40 vs 23, respectively)	
Excellent Agora Radiographic Assessment scores in all patients and no evidence of osteolysis	of R3 cups

Conclusion

R3 was associated with excellent clinical and radiographic outcomes at 5 years postoperatively, including high survivorship.

Retrospective analysis of oxidized zirconium bearing surface in hip replacement 90-day episode claims⁵¹

Patrick C, Delhougne G, Patel AR. Poster presented at: International Society for Pharmacoeconomics and Outcomes Research (ISPOR); May 18–22, 2019; New Orleans, Los Angeles, USA.

Overview

Clinical and health economic data Retrospective US database analysis

818 THAs with POLARSTEM^o/R3^o and
OXINIUM^o bearing;
2,454 THAs with other cementless hip systems and non-OXINIUM bearings

Analysis included THAs performed over three consecutive quarters

ed THAs	<u> </u>		H	
r three arters	2017 _{Q4}	\rightarrow	2018 Q2	

Results

When compared with non-OXINIUM bearings, THA with OXINIUM bearings was associated with:	
A lower revision rate in the first 90-days post-surgery (0.9 vs 1.4%; p=0.110)	
Significantly lower costs per 90-day episode of care (\$18,364 vs \$18,966; p=0.003)	A S
Lower rates of 30- and 90-day all-cause readmissions (21.3 and 12.7% relative reductions, respectively; p>0.05)	
A significant 15.9% relative reduction in rate of discharge to SNFs (p=0.002)	

Conclusion

When compared with non-OXINIUM bearings, THA with OXINIUM bearings was associated with a lower average cost per 90-day episode of care that was attributed to reductions in the use of SNFs and hospital readmission.

Minimizing complications in bikini incision direct anterior approach total hip arthroplasty: a single surgeon series of 865 cases⁵²

Alva A, Nizam I, Gogos S. *J Exp Orthop.* 2021;8:1.

Overview

Clinical data Single surgeon case series

Assessed at: 6

Results

		<u>н</u> ң
survivorship of 99.84% and 99.53°	% for the cup and stem components, respectively	
ow complication rates, ranging from	n 0 to 6.4% dependent on specific complication	
	MAC score from preoperative to postoperative measureme	ents Z

Conclusion

POLARSTEM with R3 and OXINIUM can be safely used to perform bikini incision DAA THA, demonstrating high survivorship at a mean follow-up of 3.9 years, low rates of intraoperative and postoperative complications and improvements in PROMs.

5

Excellent midterm survival and functional outcomes of a fully hydroxyapatitecoated cementless stem: first results of a prospective multicenter study⁵³

Willburger RE, Heukamp M, Lindenlauv TE, Peterlein CD, Schuttler KF. Arthroplast Today. 2020;6:201–205.

Overview

Clinical data Prospective, multicentre, observational study

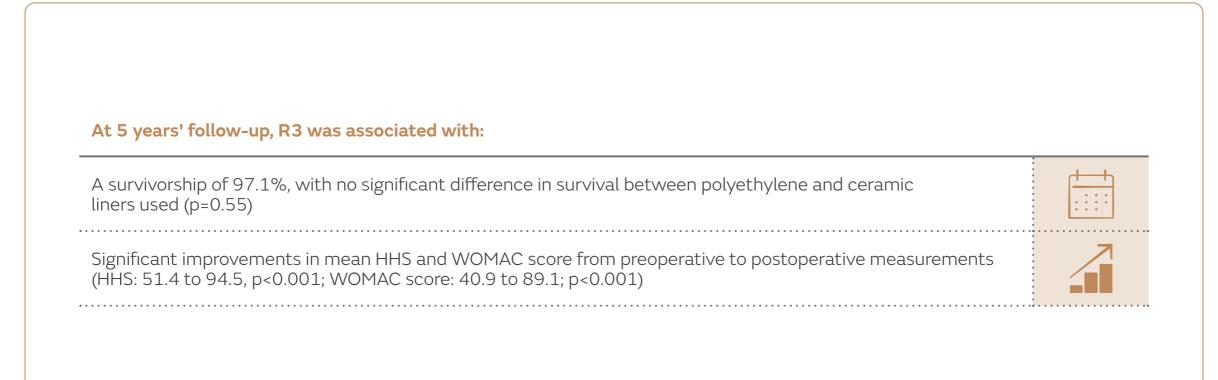
225 THAs with POLARSTEM

Results

At 5 years' follow-up, POLARSTEM was associated with:	
Excellent survivorship of 99.6%	
A low rate of intraoperative complications (1.3%)	
Significant improvements in mean HHS and WOMAC score from baseline to postoperative measurements (HHS: 48.5 to 88.0, p<0.01; WOMAC score: 58.6 to 9.3; p<0.01)	

Conclusion

of intraoperative complications, and significant improvements in PROMs.


Midterm results of a contemporary, porous-coated acetabular system in patients undergoing primary total hip replacement for degenerative hip disease: a prospective, multicenter study⁵⁴

Wilson AI, Turgeon TR, Gascoyne RW, Della Valle CJ, McCalden RW. J Arthroplasty. 2020;35:1862–1867.

Overview

Results

Conclusion

R3 was associated with excellent clinical outcomes and improvements in patient report outcomes, when used with both XLPE and ceramic liners.

years

2-year radiostereometric analysis evaluation of a short, proximally coated, triple-taper blade femoral stem versus a quadrangular-taper stem with reinforced proximal body: a randomized controlled trial⁵⁶

Fontalis A, Kayani B, Vanhegan I, et al. J Arthroplasty. 2023;38(7S):S152-S161.

Overview

Prospective, single-centre

29 THAs with POLAR3°; 27 with TriFit TS femoral stem/ Trinity acetabular shell*

Assessed at:

Results

Improvements in PROMs and EQ-5D results compared to preoperative scores	
Significantly less total migration at 6 months (p=0.018), 1 year (p=0.007) and 2 years (p=0.030)	Ŵ
*TriFit TS and Trinity are trademark of Corin.	

Conclusion

Comparison of canal fill and radiolucent line formation between two fully coated, hydroxyapatite tapered stems: a 2-year follow-up after total hip arthroplasty⁵⁷

Shichman I, Lawrence KW, Berzolla E, et al. Orthop Trauma Surg. 2023;143:6945-6954.

Overview

multicentre, observational

132 THAs with POLARSTEM^{\$}; 101 THAs with CORAIL*

Assessed at:

years

Results

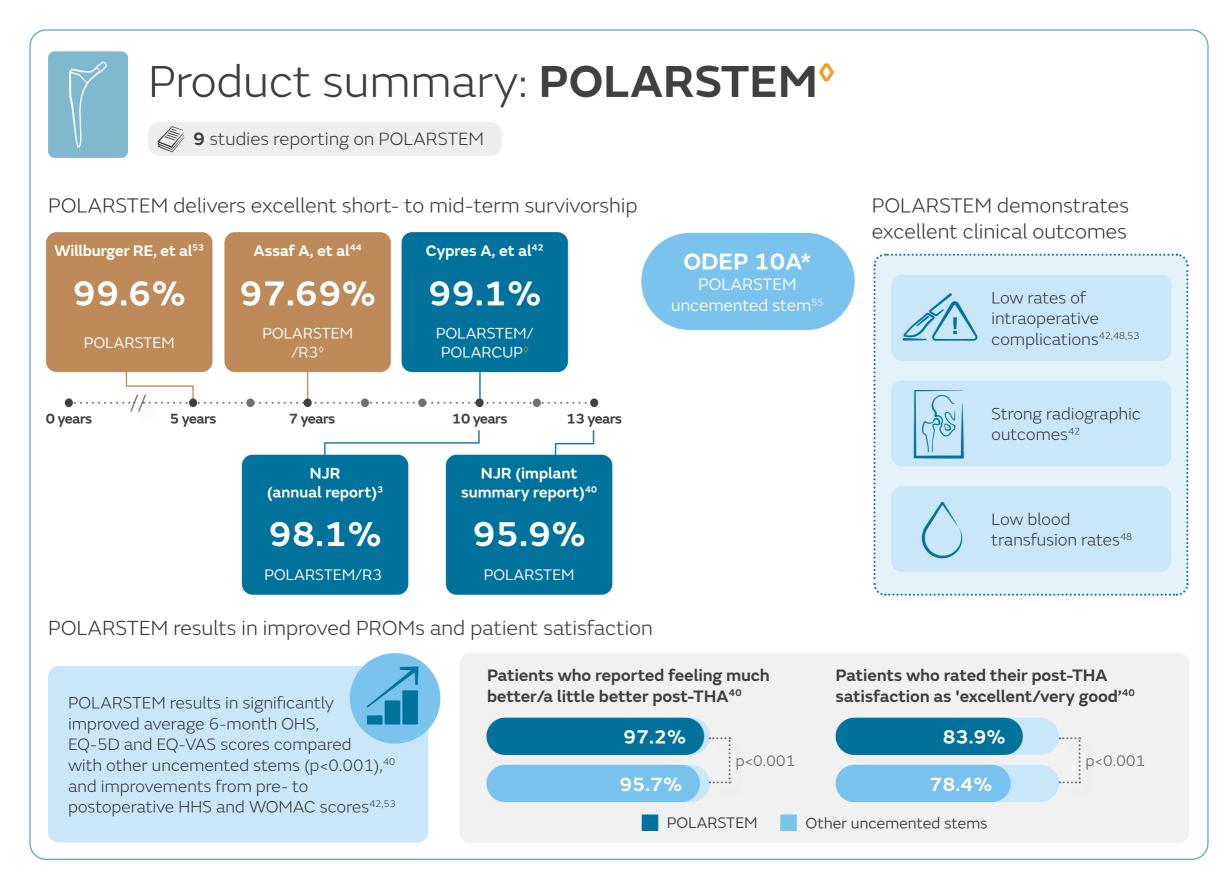
Significantly greater average femoral stem canal fill in the middle third of the stem (p=0.002)	
Comparable low rates of subsidence and low rates of radiolucent line formation	Ŵ
*CORAIL is a trademark of DePuy Synthes.	

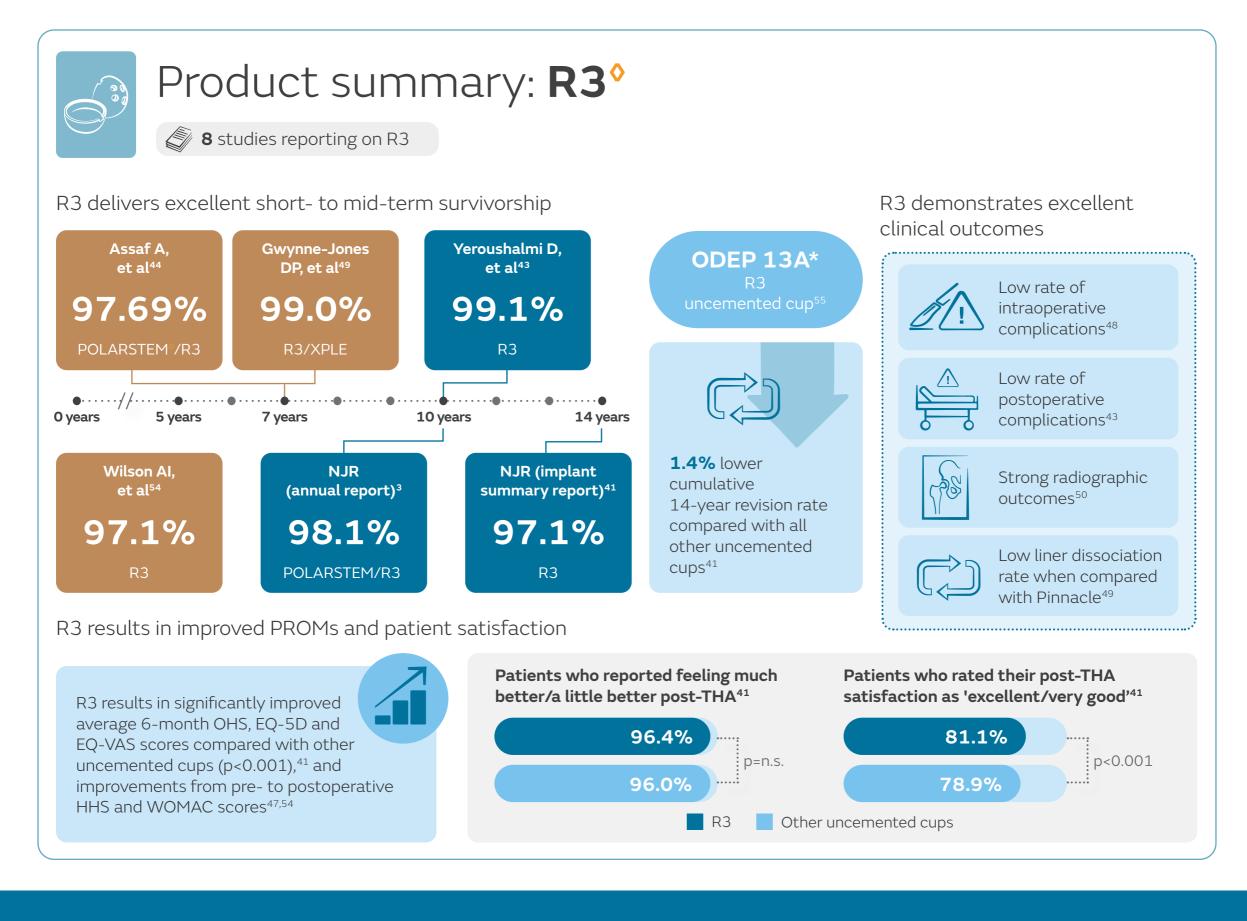
Conclusion

Fully hydroxyapatite-coated compaction broached and triple-tapered stem may reduce the risk of stress shielding after primary total hip arthroplasty⁵⁸

Kuroda, Y, Hashimoto, S, Hayashi, S, et al. Arch Orthop Trauma Surg. 2022;142:4087-4093.

Overview Clinical data Retrospective cohort study ANTHOLOGY°; 31 THAs with ANTHOLOGY°; 31 THAs with ANTHOLOGY°; 31 THAS with Provide Study


Results

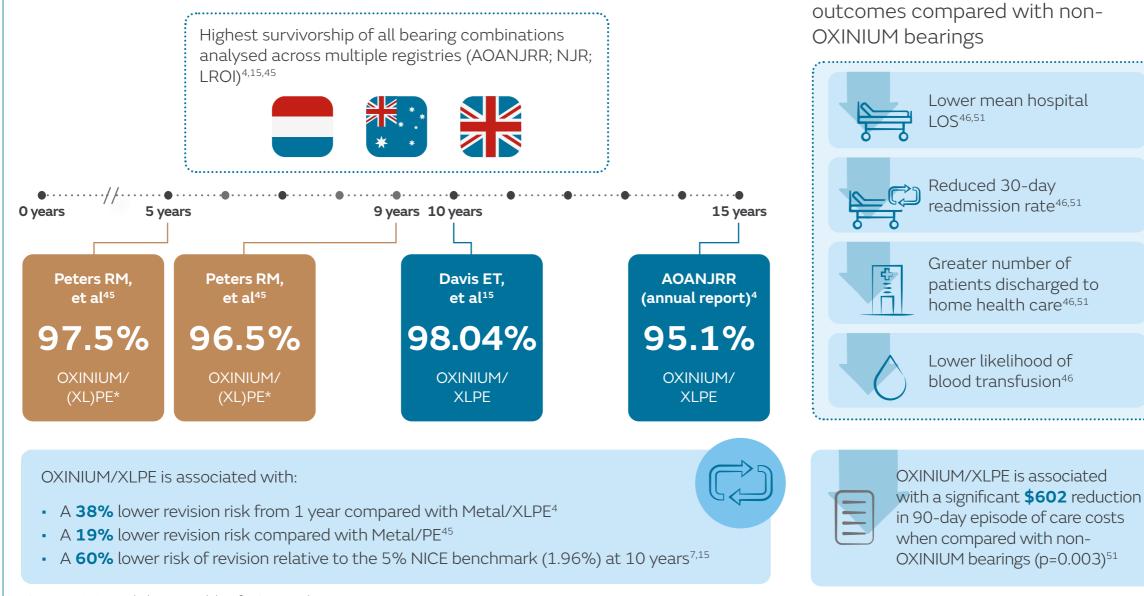


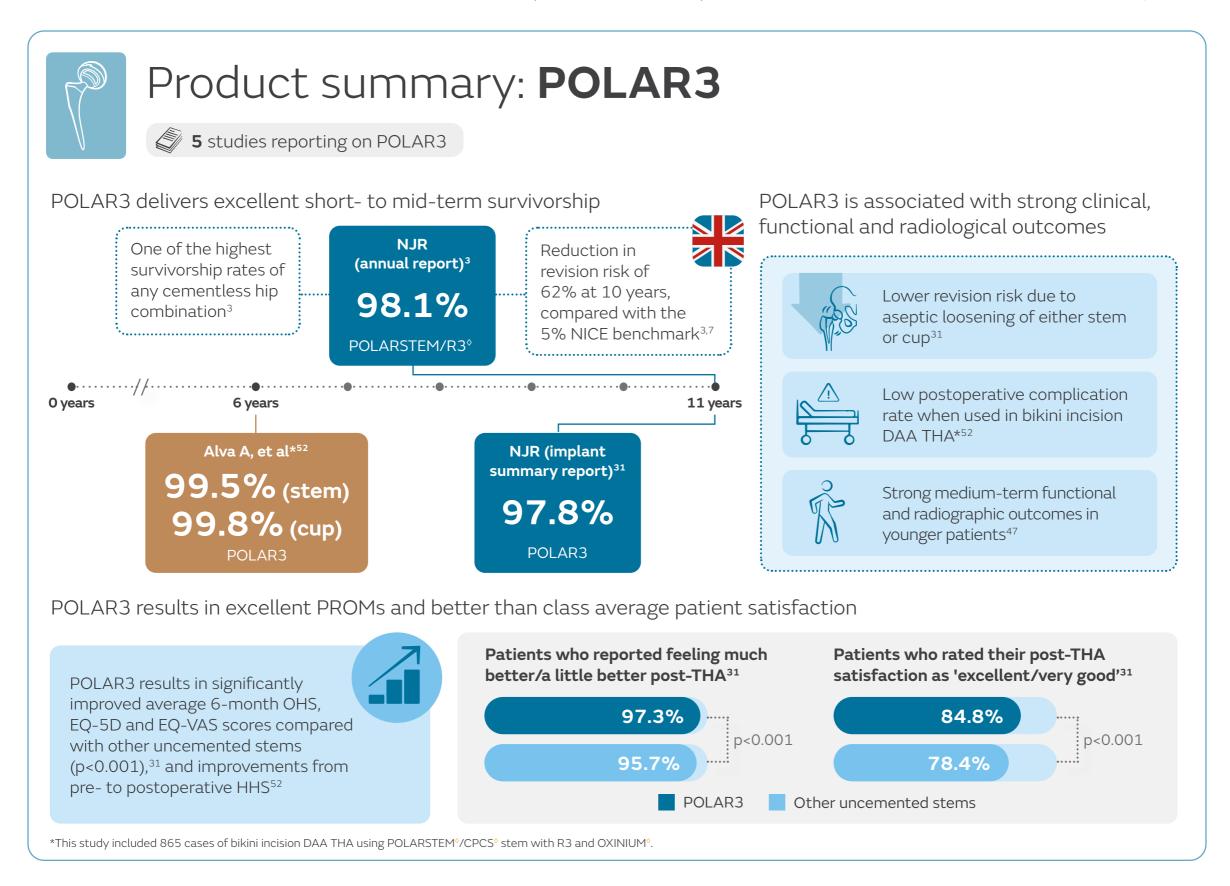
Significantly lower incidence of stress shielding (p=0.007)	<u>A</u> S
Significantly higher BMD around femoral calcar (Zone 7; p=0.009)	(FS

Conclusion

In this independent study, POLARSTEM maintained BMD around the femoral calcar at 2 years post-operatively and its use could reduce the risk of stress shielding when compared with tapered-wedge stems.

OXINIUM/XLPE results in superior


clinical and health economic


Product summary: **OXINIUM^o/XLPE**

6 studies reporting on OXINIUM/XPLE

OXINIUM/XLPE demonstrates superior mid- to long-term survivorship compared with other bearing combinations

*OXINIUM/(XL)PE includes grouped data for OXINIUM bearings on XLPE or PE.

All clinical evidence

	lue represent key evidence.			\bigcirc	\int
Author	Study summary	POLARSTEM	R3 [°]	OXINIUM ^{\$} /XLPE	POL
Ahmad A, et al. 2018	A comparative study between uncemented and hybrid total hip arthroplasty in octogenarians	\checkmark	\checkmark		
Alva A, et al. 2018	Minimising complications in bikini incision direct anterior approach total hip arthroplasty: a single surgeon series of 865 cases				V
Assaf A, et al. 2019	Mid-term clinical results of the cementless R3 cup and Polarstem total hip arthroplasty	\checkmark	\checkmark		
AOANJRR annual report 2023	Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2022 Annual Report			\checkmark	
Cypres A, et al. 2019	Long-term outcomes of a dual-mobility cup and cementless triple-taper femoral stem combination in total hip replacement: a multicenter retrospective analysis	\checkmark			
Davis ET, et al. 2020	Bearing surface and survival of cementless and hybrid total hip arthroplasty in the National Joint Registry of England, Wales, Northern Ireland and the Isle of Man	••••••		\checkmark	
Duncan S, et al. 2020	Can the choice of cementless implants and bearings during total hip arthroplasty have an impact on the overall costs within a bundled payment model?				γ

All clinical evidence

nces in bold and bi	ue represent key evidence.			\bigcirc	P
Author	Study summary	POLARSTEM	R3 [◊]	OXINIUM ⁰ /XLPE	POL
Fontalis A, et al. 2023	2-year radiostereometric analysis evaluation of a short, proximally coated, triple-taper blade femoral stem versus a quadrangular-taper stem with reinforced proximal body: a randomized controlled trial				~
Gwynne-Jones D and Memon A. 2020	Acetabular liner dissociation: A comparative study of two contemporary uncemented acetabular components	\checkmark	\checkmark		
Kuroda Y, et al. 2022	Fully hydroxyapatite-coated compaction broached and triple-tapered stem may reduce the risk of stress shielding after primary total hip arthroplasty	\checkmark			
NJR implant summary report 2023	National Joint Registry for England, Wales and Northern Ireland: POLARSTEM Cementless (Oxinium/XLPE/R3 cup) implant summary report. 20 October 2023	\checkmark	✓	\checkmark	
NJR implant summary report 2023	National Joint Registry for England, Wales and Northern Ireland: POLARSTEM Cementless implant summary report. 8 November 2023	\checkmark			
NJR implant summary report 2023	National Joint Registry for England, Wales and Northern Ireland: R3 Cementless cup implant summary report. 8 November 2023		\checkmark		

All clinical evidence

erences in Dolu and	blue represent key evidence.			\bigcirc	
Author	Study summary	POLARSTEM	R3 [°]	OXINIUM ⁰ /XLPE	POLARS
Patrick C, et al. 2019	Retrospective analysis of oxidized zirconium bearing surface in hip replacement 90-day episode claims			\checkmark	
Peters RM, et al. 2018	The effect of bearing type on the outcome of total hip arthroplasty			\checkmark	
Shichman I, et al. 2023	Comparison of canal fill and radiolucent line formation between two fully coated, hydroxyapatite tapered stems: a 2-year follow-up after total hip arthroplasty	\checkmark			
Teoh KH, et al. 2018	R3 cup does not have a high failure rate in conventional bearings: a minimum of 5-year follow-up	\checkmark	\checkmark		
Wade R and Shah KA. 2019	Functional and radiological outcome of uncemented total hip arthroplasty in young adults - 5 year follow-up				\checkmark
Willburger RE, et al. 2020	Excellent midterm survival and functional outcomes of a fully hydroxyapatite-coated cementless stem: first results of a prospective multicenter study	√			
Wilson AI, et al. 2020	Midterm results of a contemporary, porous-coated acetabular system in patients undergoing primary total hip replacement for degenerative hip disease: a prospective, multicenter study		✓		
Yeroushalmi D, et al. 2021	Excellent mid-term outcomes with a hemispheric titanium porous- coated acetabular component for total hip arthroplasty: 7–10 year follow-up		\checkmark		

References

- **1.** Zagra L. Advances in hip arthroplasty surgery: what is justified. *EFORT Open Rev.* 2017;2:171–178.
- 2. Varacallo M, Luo TD, Johanson NA. Total Hip Arthroplasty Techniques. Treasure Island, FL: StatPearls Publishing; 2021.
- **3.** National Joint Registry for England, Wales and Northern Ireland. 20th Annual Report, 2023. Available at: https://reports.njrcentre.org.uk. Accessed December 8, 2023.
- **4.** Australian Orthopaedic Association National Joint Replacement Registry Hip, Knee & Shoulder Arthroplasty: 2023 Annual Report. Available at: https://aoanjrr.sahmri. com/annual-reports-2023. Accessed October 24, 2023.
- **5.** Dutch Arthroplasty Register (LROI). Online LROI annual report (2023). Available at: https://www.lroi-report.nl/hip. Accessed December 8, 2023.
- 6. Evans JT, Blom AW, Timperley AJ, Dieppe P, Wilson MJ, Sayers A, et al. Factors associated with implant survival following total hip replacement surgery: A registry study of data from the National Joint Registry of England, Wales, Northern Ireland and the Isle of Man. *PLoS Med.* 2020;17: e1003291.
- 7. National Institute for Health and Care Excellence (NICE). Total hip replacement and resurfacing arthroplasty for end-stage arthritis of the hip. Available at: https://pathways.nice.org.uk/pathways/joint-replacement/hip replacement#content=view-node%3Anodes-surgical-procedures. Accessed November 11, 2021.
- 8. Smith & Nephew, Inc. EA_RECON_POLAR3_007_v1 SLR. Internal report. December 2020.
- **9.** van der Jagt DR, Brekon A, Mokete L, Pietrzak J, Nortje M, Schepers A. Fixed prostheses can be loose: High hydroxyapatite loosening rates in the collarless corail uncemented stem. *Orthopaedic Proceedings*. 2018; 100-B(S11) S11.
- Hoskins W, Bingham R, Lorimer M, de Steiger R. The effect of size for a hydroxyapatite-coated cementless implant on component revision in total hip arthroplasty: an analysis of 41,265 Stems. J Arthroplasty. 2020; 35(4):1074–1078.
- Ciccarelli P, Urakcheeva I, Biondi A and Torre M. Italian Arthroplasty Registry. Annual Report 2021 — Addendum. Roma: Il Pensiero Scientifico Editore. 2022. Available at: http://riap.iss.it/. Accessed December 8, 2023.
- **12.** Vigdorchik JM, Sharma AK, Elbuluk AM, Carroll KM, Mayman DJ, Lieberman JR. High offset stems are protective of dislocation in high-risk total hip arthroplasty. J Arthroplasty. 2020;36:210–216.
- **13.** Memon AR, Gwynne-Jones D. Polyethylene liner dissociation with the Pinnacle acetabular component: should we be concerned. *Arthroplasty Today.* 2020:6:5–8.
- **14.** Bhaskar D, Rajpura A, Board T. Current concepts in acetabular positioning in total hip arthroplasty. *Indian J Orthop.* 2017;51:386–396.
- **15.** Davis ET, Pagkalos J, Kopjar B. Effect of bearing surface on survival of cementless and hybrid total hip arthroplasty. *JBJS OA*. 2020;5:e0075.
- **16.** McDonnell S, Boyce G, Bare J, Young D, Shimmin A. The incidence of noise generation arising from the large-diameter Delta Motion ceramic total hip bearing. *Bone Joint J.* 2013;95-B(2):160–165.
- 17. Migaud H, Putman S, Kern G, et al. Do the reasons for ceramic-on-ceramic

revisions differ from other bearings in total hip arthroplasty? *Clin Orthop Relat Res.* 2016;474:2190–2199.

- Rankin CS, Robinson PG, Beattie N, Gaston P. Fracture of a BIOLOX Delta ceramic femoral head: a case report and update of the literature. *JBJS Case Connect*. 2019;9:e0336.
- Parkes M, Sayer K, Goldhofer M, Cann P, Walter W, Jeffers J. Monoclinic transformation in BIOLOX DELTA ceramic hip retrievals. Orthopaedic Proceedings. 2018; 99-B(5).
- **20.** Roy M, Noel O, Whiteside L. Phase transformation and roughening in artificially aged and retrieved zirconia-toughened alumina femoral heads. *J Arthroplasty.* 2019;34:772–780.
- Parikh A, Hill P, Pawar V, Sprague J. Long-term simulator wear performance of an advanced bearing technology for TTHA. Poster presented at ORS 2013 Annual Meeting; January 26–29, 2013; San Antonio, Texas, USA.
- **22.** Hussey DK, McGrory BJ. Ten-year cross-sectional study of mechanically assisted crevice corrosion in 1352 consecutive patients with metal-on-polyethylene total hip arthroplasty. *J Arthroplasty*. 2017;32:2546–2551.
- **23.** Vanhegan IS, Malik AK, Jayakumar P, Ul Islam S, Haddad FS. A financial analysis of revision hip arthroplasty: the economic burden in relation to the national tariff. *J Bone Joint Surg Br.* 2012;94:619–623.
- **24.** Hasenauer MD. How to develop a fair revision arthroplasty bundle: using perioperative complications and readmissions to investigate. *J Arthroplasty*. 2020;35:3427–3431.
- **25.** Klouche S, Sariali E, Mamoudy P. Total hip arthroplasty revision due to infection: A cost analysis approach. *Orthop Traumatol Surg Res.* 2010; 96:124–132.
- **26.** Schwierz C. Cost-containment policies in hospital expenditure in the European Union. European Commission, 2016. Available at: https://ec.europa.eu/info/sites/info/files/ dp037_en.pdf. March 25, 2022.
- 27. Davis E, Saunders C. Patient satisfaction after primary total hip arthroplasty: can the bar be raised? A systematic literature and meta-analysis. Poster presented at: 2nd World Arthroplasty Congress; April 19–21, 2018; Rome, Italy.
- **28.** Rolfson O, Karrholm J, Dahlberg LE, Garellick G. Patient-reported outcomes in the Swedish Hip Arthroplasty Register. *J Bone Joint Surg.* 2011; 93-B(7).
- **29.** Watson BS, Jenkins PJ, Ballantyne JA. The natural history of unexplained early poor function following total hip replacement. *Int Orthop.* 2014;38:33–37.
- **30.** Physicians Weekly. The true cost of alienating patients. Available at: https://www. physiciansweekly.com/alienating-patients-cost. Accessed November 8, 2021.
- **31.** National Joint Registry for England, Wales and Northern Ireland: Polarstem Cementless (Oxinium/XLPE/R3 cup) implant summary report. 20 October 2023. Copy available from Smith & Nephew on request.
- **32.** Leto A, Zhu W, Matsubara M, Pezzotti G. Bioinertness and fracture toughness evaluation of the monoclinic zirconia surface film of OXINIUM femoral head by Raman and cathodoluminescence spectroscopy. *J Mech Behav Biomed Mater.* 2014;31:135–144.

References

- **33.** Hampton C, Weitzler L, Baral E, Wright TM, Bostrom MPG. Do oxidized zirconium heads decrease tribocorrosion in total hip arthroplasty? A study of retrieved components. *Bone Joint J.* 2019;101-B:386–389.
- **34.** Pawar V, Jones B, Sprague J, Salehi A, Hunter G. Acidic fretting tests of oxidized Zr-2.5Nb, CoCr and SS femoral heads. *ASM International*. 2005:403–408.
- **35.** Cartner J, Aldinger P, Li C, Collins D. Characterization of femoral head taper corrosion features using a 22-year retrieval database. *HSS J.* 2016;13:35–41.
- **36.** Papannagari R, Hines G, Sprague J. Wettability analysis of orthopaedic materials using optical contact angle methods. Poster presented at: ORS 2011 Annual Meeting; Long Beach, California, USA.
- **37.** Hunter G and Long M. Abrasive wear of oxidized Zr-2.5Nb, CoCrMo, and Ti-6Al-4V against bone cement. Presented at: 6th World Biomaterials Cong. Trans., Society For Biomaterials; 2000; Minneapolis, MN.
- **38.** Sugano N, Takao M, Sakai T, Nishii T, Miki H. Does CT-Based navigation improve the long-term survival in ceramic-on-ceramic THA? *Clin Orthop Relat Res.* 2012;470:3054–3059.
- **39.** Davis ET, McKinney KD, Kamali A, Kuljaca S, Pagkalos J. Reduced risk of revision with computer-guided versus non-computer-guided THA. An analysis of manufacturer-specific data from the National Joint Registry of England, Wales, Northern Ireland and the Isle of Man. *JBJS OA*. 2021;6;e21.00006.
- **40.** National Joint Registry for England, Wales and Northern Ireland: Polarstem Cementless implant summary report. 8 November 2023. Copy available from Smith & Nephew on request.
- **41.** National Joint Registry for England, Wales and Northern Ireland: R3 Cementless Cup implant summary report. 8 November 2023. Copy available from Smith & Nephew on request.
- **42.** Cypres A, Fiquet A, Girardin P, et al. Long-term outcomes of a dual-mobility cup and cementless triple-taper femoral stem combination in total hip replacement: a multicenter retrospective analysis. *J Orthop Surg Res.* 2019;14:376.
- **43.** Yeroushalmi D, Singh V, Maher N, Gabor JA, Zuckerman JD, Schwarzkopf R. Excellent mid-term outcomes with a hemispheric titanium porous-coated acetabular component for total hip arthroplasty: 7–10 year follow-up. *Hip Int.* 2021 Aug 19 doi: 10.1177/11207000211040181.
- **44.** Assaf A, Manara JR, Teoh KH, Evans AR. Mid-term clinical results of the cementless R3 cup and Polarstem total hip arthroplasty. *Eur J Orthop Surg Traumatol.* 2019;29:827–833.
- **45.** Peters RM, Van Steenbergen LN, Stevens M, Rijk PC, Bulstra SK, Zijlstra WP. The effect of bearing type on the outcome of total hip arthroplasty. *Acta Orthop.* 2018:89;163–169.
- **46.** Duncan S, Patel A, Delhougne G, Patrick C. Can the choice of cementless implants and bearings during total hip arthroplasty have an impact on the overall costs within a bundled payment model? *J Hip Surg.* 2020;4:66–76.
- **47.** Wade R, Shah KA. Functional and radiological outcome of uncemented total hip arthroplasty in young adults –5 year follow-up. *J Orthop.* 2019;18:237–239.

- **48.** Ahmad A, Mirza Y, Evans A, Teoh K. A comparative study between uncemented and hybrid total hip arthroplasty in octogenarians. *J Arthroplasty*. 2018;33:3719–3723.
- **49.** Gwynne-Jones D, Memon A. Acetabular liner dissociation: a comparative study of two contemporary uncemented acetabular components. *Arthoplast Today.* 2020;6:354–359.
- **50.** Teoh KH, Whitham RDJ, Golding DM, Wong JF, Lee PYF, Evans AR. R3 cup does not have a high failure rate in conventional bearings: a minimum of 5-year follow-up. *J Arthroplasty.* 2018:33;460–463.
- 51. Patrick C, Delhougne G, Patel AR. Retrospective analysis of oxidized zirconium bearing surface in hip replacement 90-day episode claims. Poster presented at: International Society for Pharmacoeconomics and Outcomes Research (ISPOR); May 18–22, 2019; New Orleans, Los Angeles, USA.
- **52.** Alva A, Nizam I, Gogos S. Minimizing complications in bikini incision direct anterior approach total hip arthroplasty: a single surgeon series of 865 cases. *J Exp Orthop.* 2018;8:1.
- **53.** Willburger RE, Heukamp M, Lindenlauv TE, Peterlein CD, Schuttler KF. Excellent midterm survival and functional outcomes of a fully hydroxyapatite-coated cementless stem: first results of a prospective multicenter study. *Arthroplast Today.* 2020;6:201–205.
- **54.** Wilson AI, Turgeon TR, Gascoyne RW, Della Valle CJ, McCalden RW. Midterm results of a contemporary, porous-coated acetabular system in patients undergoing primary total hip replacement for degenerative hip disease: a prospective, multicenter study. *J Arthroplasty.* 2020;35:1862–1867.
- **55.** Orthopaedic Data Evaluation Panel (ODEP). Available at http://www.odep.org.uk. Accessed December 8, 2023.
- 56. Fontalis A, Kayani B, Vanhegan I, Tahmassebi J, Haddad IC, Giebaly DE, Rajput V, Hansjee S, Haddad FS. 2-year radiostereometric analysis evaluation of a short, proximally coated, triple-taper blade femoral stem versus a quadrangular-taper stem with reinforced proximal body: a randomized controlled trial. J Arthroplasty. 2023;38(7S):S152–S161.
- **57.** Shichman I, Lawrence KW, Berzolla E, Hernandez CS, Man-El R, Warschawski Y, Snir N, Schwarzkopf R, Heppinstall MS. Comparison of canal fill and radiolucent line formation between two fully coated, hydroxyapatite tapered stems: a 2-year follow-up after total hip arthroplasty. *Arch Orthop Trauma Surg.* 2023;143:6945–6954.
- **58.** Kuroda Y, Hashimoto S, Hayashi S, Nakano N, Fujishiro T, Hiranaka T, Kuroda R, Matsumoto T. Study summary: Fully hydroxyapatite-coated compaction broached and triple-tapered stem may reduce the risk of stress shielding after primary total hip arthroplasty. Arch Orthop Trauma Surg. 2022;142:4087–4093.

Abbreviations and terminology

Abbreviations

ABT	Advanced bearing technology
AOANJRR	Australian Orthopaedic Association National Joint Replacement Registry
CI	Confidence interval
CMoXLPE	Ceramicised metal on XLPE
CoC	Ceramic on ceramic
CoXLPE	Ceramic on highly crosslinked polyethylene
CoPE	Ceramic on polyethylene
CPCS	Collarless polished cemented stem
СТ	Computerised tomography
DAA	Direct anterior approach
EQ-5D	EuroQol-5 Dimensions
HAC	Hydroxyapatite coating

*ISRs are produced by the National Joint Registry of England, Wales and Northern Ireland and summarises usage and outcomes associated with the specific combinations of products. These analyses are based on data collected by the NJR and PROMs data collected by NHS Digital. Disclaimer relating to the use of ISRs: The data used for this analysis was obtained from the NJR Supplier Feedback System. The Healthcare Quality Improvement Partnership ('HQIP') and/or the National Joint Registry ('NJR') take no responsibility for the accuracy, currency, reliability and correctness of any data used or referred to in this report, nor for the accuracy, currency, reliability and correctness of links or references to other information sources and disclaims all warranties in relation to such data, links and references to the maximum extent permitted by legislation.

HHS	Harris Hip Score
HR	Hazard ratio
ISR	Implant summary report*
LOS	Length of stay
LROI	Landelijke Registratie Orthopedische Implantaten (Dutch Arthroplasty Register)
MACC	Mechanically assisted crevice corrosion
MoHXLPE	Metal on highly crosslinked polyethylene
MoPE	Metal on polyethylene
MoXLPE	Metal on crosslinked polyethylene
NICE	National Institute for Health and Care Excellence
NJR	National Joint Registry ⁺
OA	Osteoarthritis

[†]We thank the patients and staff of all the hospitals in England, Wales and Northern Ireland who have contributed data to the National Joint Registry. We are grateful to the Healthcare Quality Improvement Partnership (HQIP), the NJR Steering Committee and staff at the NJR Centre for facilitating this work. The views expressed represent those of the authors and do not necessarily reflect those of the National Joint Registry Steering Committee or the Health Quality Improvement Partnership (HQIP) who do not vouch for how the information is presented.

[‡]XLPE is classified as ultra-high molecular weight polyethylene that has been irradiated by high dose (>50kGy) gamma or electron beam radiation.

Abbreviations and terminology

Abbreviations

ODEP	Orthopaedic Data Evaluation Panel
OHS	Oxford Hip Score
OR	Odds ratio
PE	Polyethylene
PROM	Patient reported outcome measure
QoL	Quality of life
RI	Real intelligence
SNF	Skilled nursing facility
THA	Total hip arthroplasty
VAS	Visual analogue scale
WOMAC	Western Ontario and McMaster Universities Osteoarthritis Index

Terminology variations

Ceramic/Ceramic	Ceramic on ceramic
Ceramic/PE	Ceramic on polyethylene
Ceramic/XLPE	Ceramic on polyethylene
CMoXLPE or OXINIUM ^o /XLPE	Ceramicised metal on XLPE
CPE	Conventional polyethylene
Metal/PE	Metal on polyethylene
Metal/XLPE	Metal on XLPE

For detailed product information, including indications for use, contraindications, precautions and warnings, please consult the product's applicable Instructions for Use (IFU) prior to use.

Smith & Nephew, Inc 1450 Brooks Road Memphis, TN 38116, USA Smith & Nephew Orthopaedics AG, Baar, Switzerland is the legal manufacturer for POLARCUP^o and POLARSTEM^o

Trademark of Smith+Nephew
All Trademarks acknowledged
©2024 Smith+Nephew
22464 V11 0224. Published February 2024.

Developed by Evidence Communications, Global Clinical & Medical Affairs www.smith-nephew.com

