A comprehensive guide to using ALLEVYN^o Dressings in your preventive protocols in at-risk hospital patients

Smith
 Nephew

ALLEVYN^{\$} LIFE Foam Dressing

ALLEVYN^{\$} GENTLE BORDER Foam Dressing

Contents

1.	Understanding pressure injuries	3
	 Understanding pressure injuries 	
	> How pressure injuries develop	.4
	> Choose a dressing designed for prevention	.5

2. ALLEVYN^o LIFE

Foam Dressings	6
> The ALLEVYN LIFE difference	
> Performance under pressure	7
> Sizes and designs	8

3. ALLEVYN GENTLE BORDER

	Foam Dressings	9
	> ALLEVYN GENTLE BORDER Dressing	
	> Sizes and designs	. 10
4.	Risk factors	12
	> Intensive Care Unit (ICU) patients	.12
	> Operating Room (OR) patients	. 14
	> Emergency Department (ED) patients	.16
5.	Ordering codes	18

Understanding the impact of pressure injuries

1 out of 10 adults

are affected by hospital-acquired pressure injuries (HAPIs)¹

Patients with HAPIs in the US:

- Cost an additional
 \$21,784²
- Spend an extra
 9.5 days
 in hospital²
- Have high readmission rates within
 30 to 180 days of discharge² compared to patients without HAPIs

HAPI complications can be life threatening,² painful and distressing,³ impacting patients, their family, caregivers and frontline staff¹

How pressure injuries develop

A pressure injury is defined as localized skin/underlying tissue damage as a result of pressure or pressure in combination with shear. Pressure injuries usually occur over a bony prominence or related to medical device use^{4,5}

Factors contributing to pressure injury onset include:^{4,5}

- Pressure
- Friction
- Shear
- Microclimate

Trusted performance for your pressure ulcer protocols

International guidelines recommend the use of foam dressings as part of a comprehensive pressure injury prevention program and should be applied as early as possible in the care pathway.⁴

Prophylactic dressings differ in quality. Considerations should include:⁴

- Appropriate size and dressing design
- Ability to manage moisture
- Ease of application and removal
- Ability of the dressing to stay in place
- Ability to routinely lift the dressing for skin inspection
- Preferences, comfort and allergies of the at-risk individual
- Co-efficient of friction
 at the dressing interface
- Cost-effectiveness

Dressings should be used in conjunction with other preventive measures.

The ALLEVYN[®] LIFE difference

ALLEVYN LIFE Foam Dressing is an all-in-one dressing for wound management and pressure injury prevention⁵*

Unique five-layer construction redistributes pressure^{7†}

Breathable top film with a bacterial and showerproof barrier,⁹⁻¹² as well as a low friction coefficient to reduce the generation of shear^{13†}

EXUMASK^o Discretion Layer

Hyperabsorbent lock-away layer – with **EXULOCK**[•] Technology to help minimize leakage^{9,14,15}

Highly absorbent^{9,16} hydrocellular foam layer

The soft silicone adhesive wound contact layer balances **adherence and gentleness**, enabling the dressing to be **lifted and repositioned** to facilitate skin inspections, and helping to **minimize pain** during dressing changes^{12,17,18}

Nearly 2X longer wear time than other compared standard dressings^{19‡}

Up to **5 days wear** on the sacrum Up to **7 days wear** on other locations^{8,12,18}

*As part of a comprehensive pressure injury intervention protocol +As demonstrated in laboratory testing ‡n=37; dressing retention was 1.92 longer §n=118 Available in a wide range of shapes and sizes, helping to reduce complexity in dressing choices. ALLEVYN LIFE Dressings are conformable^{14,20} and comfortable.^{14,21} **92% of HCPs** would recommend ALLEVYN LIFE Dressings within their healthcare organization.^{22§}

Performance under pressure

Compared to standard preventive care alone, ALLEVYN[°] LIFE Dressing has been shown to:

Reduce incidence of sacral pressure injuries by up to **7196** Produce per-patient estimated cost savings between

Redistributes pressure more than leading competitors.7*

Pressure can deform skin and soft tissues, especially over a bony prominence. Pressure injuries may occur both with short durations of high levels of pressure, and with long durations of lower levels of pressure.⁴

ALLEVYN LIFE Dressings significantly spread the pressure over a greater contact area, and showed lower average and peak pressures when compared to other foam dressings.⁷*

Mepilex[™] Border dressing

Pressure redistribution wound contact side Average pressure: >178mmHg. Contact area: 6.6cm² Mean peak pressure: >827mmHg Tested on dry dressings using a 2.1kg weight

Pressure mapping is a demonstration measuring only pressure and does not replace the need for clinical evidence of effectiveness.

Pressure redistribution wound contact side

Tested on dry dressings using a 2.1kg weight

Mean peak pressure: 552mmHg

Average pressure: 71mmHg. Contact area: 18.4cm²

ALLEVYN^o LIFE Dressings work with a variety of medical devices including:

Cervical collar (front) Area at risk: chin, jaw, clavical, occiput

Cervical collar (back) Area at risk: spine, shoulder blades

Foot pump Area at risk: achilles, top/bottom foot

Area at risk: top/bottom foot, heel, calf

Multi-podus boot

Sequential compression device (SCD)

Area at risk: lateral anterior ankle, achilles, top of foot

ALLEVYN LIFE Dressings offer benefits in a variety of hospital settings. See how it can help in the:

Area at risk: occiput

Cervical collar (back)

Brace Area at risk: hand

Available in three unique designs and multiple sizes to fit your pressure injury prevention and/or wound management needs.

ALLEVYN LIFE Heel Dressing

ALLEVYN[®] GENTLE BORDER Foam Dressings

A versatile dressing to protect skin under medical devices

ALLEVYN GENTLE BORDER Dressings are versatile, conformable and easy to cut,^{24–28}* making it ideal to protect skin under medical-devices. The multi-way stretch helps application on awkward areas and joints.^{24–26,28}

Breathable top film^{25,26} allows evaporation of fluid. The top layer is showerproof

The top layer is showerproof²⁹ and has a bacterial barrier³⁰

Highly absorbent^{25,26} foam layer

Gentle silicone adhesive²⁴

allows the dressing to be repositioned upon initial application³¹ and suitable for use on fragile and sensitive skin²⁸ A REPUTER DE

ALLEVYN[°] GENTLE BORDER Dressings work with a variety of medical devices

One in three pressure injuries in hospitalised adult patients are related to medical devices³²

Medical-device related pressure injuries are more commonly associated with devices such as endotracheal and nasogastric tubes, oxygen tubing, non-invasive ventilation masks (CPAP/ BiPAP), and urinary catheters, among others

Cervical collar (front) Area at risk: chin, jaw, clavicle, occiput

nasal cannulas

Nasogastric tubes/(hi flo)

Area at risk: nose, upper lip, cheek, ear

Cervical collar (bαck) Area at risk: occiput

Trach flange Area at risk: neck

Non-invasive positive pressure ventilation (NIPPV)/CPAP Area at risk: forehead, nose, cheek, chin

Gastric tube Area at risk: stomach

Multi-podus boot Area at risk: top/bottom foot, heel, calf

Multi-podus boot Area at risk: top/bottom foot, heel, calf

Brace

Area at risk: hand

Sequential compression device (SCD)

Area at risk: lateral anterior ankle, achilles, top of foot

ALLEVYN[◊] GENTLE BORDER Dressings offer benefits in a variety of hospital settings. See how it can help in the:

Common pressure injury risk factors for ICU patients^{4,33}

Know these additional risk factors

- 1. Age and skin status
- 2. Length of stay
- 3. Immobility or limited mobility
- 4. Vasopressor use
- 5. Severity of illness

- Acute physiology and chronic health evaluation (APACHE II) score
- 7. Mechanical ventilation
- 8. Presence of a medical device

Follow these guidelines to help protect patients from pressure injuries^{4,33}

- Identify at-risk patients^{4,33}
 - The Braden score most widely-used risk assessment tool, is made up of six subscale categories. The lower the score, the greater the risk. Individuals are considered at risk with a score of 18 or less.
 - Other risk assessment scales include Norton and Waterlow scores
- Inspect skin thoroughly and often
- Adhere to your institution's pressure injury prevention guidelines
- Appropriately document your efforts
- Work together to streamline prevention processes
- Use a soft silicone multi-layered foam dressing to protect the skin of individuals at risk for pressure injuries—continue to implement other preventive measures when using dressings

of pressure injuries are acquired in the ICU³⁴

1 in 3

pressure injuries in hospitalized adult patients are related to medical devices³²

See how ALLEVYN^o LIFE Dressings can work with a variety of medical devices

See how ALLEVYN^o GENTLE BORDER Dressings can work with a variety of medical devices

Common points of pressure⁴

Most common locations:

Sacrum Back

.

- Buttocks Heels
- Occiput
- Elbows

Protection against device-related injuries³²

Device	Area at risk
(NIPPV) Non-invasive positive pressure ventilation/BIPAP	Forehead, nose, cheeks
Nasotracheal tubes/nasal cannulas	Nose, cheeks, ears
Wrist brace	Hands
Nasal cannula/oximetry probe	Ears
Cervical collar	Chin, clavicle

Common pressure injury risk factors for OR patients^{4,35}

Know these additional risk factors

- Duration of time prior to surgery

 Individuals who were immobile and had a delay in surgery of more than 12 hours were 1.6–1.7 times more likely to develop a PI⁴
- 2. Duration of surgery. A procedure lasting longer than 3 hours
- 3. American Society of Anesthesiologists (ASA) physical status classification -ASA score of III or IV were more than four times more likely to develop a pressure injury
- 4. Other surgical factors anesthesia type, no. of surgeries, positioning

Follow these guidelines to help protect patients from pressure injuries^{4,35–37}

Use validated screening tools to identify at-risk patients^{36,37}

 Use Scott Triggers to identify patients at high risk³⁶ (two or more of the following)

Age greater than 62 years

- 1. Serum albumin < 3.5 g/dL
- 2. ASA Score ≥3
- Anticipated time in the OR
 >3 hours (180 minutes)
- Use the Munroe Tool to determine the patient's risk throughout the perioperative period³⁷
 - 6 pre-operative risk factors
 - 7 intra-operative risk factors
 - 2 post-operative (PACU) risk factors
 - Score of 1–3 for each
 - Calculations and interpretation
 of scores provided on the tool
- Adhere to your facility's pressure injury prevention guidelines
- Perform a thorough assessment of skin condition before, during and after surgery
- Appropriately document your efforts
- Work together to streamline processes related to prevention
- Use a soft silicone multi-layered foam dressing to protect the skin of individuals at risk
 for pressure injuries—continue to implement other preventive measures when using dressings

Did you know?

of healthcare-acquired pressure injuries occur in surgical settings^{4,35}

48%

increase in risk of PI development with each additional hour beyond the first 60 minutes³⁵

See how ALLEVYN° LIFE Dressings can work with a variety of medical devices

See how ALLEVYN^o GENTLE BORDER Dressings can work with a variety of medical devices

Common points of pressure^{4,38}

Pressure injuries can appear within 48 to 72 hours after surgery.

Most common locations of pressure injuries:¹⁶ • Ischium (28%) • Sacrum (17–27%) • Trochanter (12–19%) • Heel (9–18%)

Device	Area at risk
(NIPPV) Non-invasive positive pressure ventilation/BIPAP	Forehead, nose, cheeks
Nasotracheal tubes/nasal cannulas	Nose, cheeks, ears
Wrist brace	Hands
Nasal cannula/oximetry probe	
Cervical collar	Chin, clavicle
Splint	
Straps	Ankles, arms, hips, etc.
Backboard	Occiput, shoulders, back

Common pressure injury risk factors for ED patients^{4,39–41}

Know these additional risk factors

- 1. Advanced age
- 2. Dehydration and poor nutrition
- 3. Moist skin
- 4. Braden score
- 5. Poor sensory reception
- 6. Comorbid conditions (diabetes, pulmonary disease)
- 7. Use of medical devices (e.g. cervical collar)
- 8. Poorly padded ED equipment and restrictive positioning
- 9. Prolonged immobilization
- 10. Head-of-bed elevation

-1 2 1 2 1

Follow these guidelines to help protect patients from pressure injuries^{4,41}

- Timeliness is essential pressure injuries can develop in as little as two hours
- Identify patients at high risk using
 - The Norton Scale (score <14)
 - The Braden Scale (score <18)
 - Other risk-assessment tools
- Inspect skin thoroughly and often
- Application of a prophylactic dressing should be initiated as early as possible in the care pathway, *i.e. in the Emergency Room*
- Adhere to your institution's pressure injury prevention guidelines
- Appropriately document your efforts
- Work together to streamline prevention processes
- Use a soft silicone multi-layered foam dressing to protect the skin of individuals at risk for pressure injuries—continue to implement other preventive measures when using dressings

Did you know?

Nearly

24%

Emergency Department (ED) patients are over 60 years old, with multiple comorbidities and medical illnesses³⁹

<mark>99.2%</mark>

of patients who developed a pressure injury were in the ED for more than two hours⁴⁰

See how ALLEVYN° LIFE Dressings can work with a variety of medical devices

See how ALLEVYN^o GENTLE BORDER Dressings can work with a variety of medical devices

Common points of pressure^{4,41}

Most common locations⁴

- Sacrum
- Buttocks .
- Occiput •

- Back
- Heels Ξ.
- Elbows х.

Most common risk areas related to medical device injuries³²

Device	Area at risk
Cervical collar	Chin, clavicles
Wrist brace	Hands
Splint	Heels
Wraps	Elbows
Straps	Ankles
Backboard	Occiput, shoulders, back

Ordering information

Code	Description	Qty
	IFE Dressings	
66801067	10.3cm x 10.3cm	10
66801068	12.9cm x 12.9cm	10
	15.4cm x 15.4cm	10
	21cm x 21cm	10
66801304	Heel 25cm x 25.2cm	5
	Small Sacrum 17.2cm x 17.5cm	10
66801307		10

*Also available as ALLEVYN Ag GENTLE BORDER Antimicrobial Foam Dressing

For detailed product information, including indications for use, ingredients, directions, contraindications, precautions, warnings, and/or important safety information, please consult each product's package labeling, Instructions for Use (IFU), and/or Drug Facts prior to use.

Advanced Wound Management

www.smith-nephew.com

Smith & Nephew Medical Ltd Croxley Park Building 5 Lakeside, Hatters Lane, Watford, Hertfordshire WD18 8YE - UK

.

 T +44 (0) 1923 477100
 All trademarks acknowledged

 F +44 (0) 1482 477101
 ©August 2023 Smith+Nephew

 AWM-AWC-28945 | GMC1270
 AWM-AWC-28945 | GMC1270

[◊]Trademark of Smith+Nephew

Code	Description	Qty
ALLEVYN GE	ENTLE BORDER Dressings	
66800269*	7.5cm x 7.5cm*	10
66800270*	10cm x 10cm*	10
66800900	10cm x 20cm	10
66800264	10cm x 25cm	10
66800265	10cm x 30cm	10
66800272*	12.5cm x 12.5cm*	10
66800975	15cm x 15cm	10
66800273*	17.5cm x 17.5cm*	10
66800506	Heel 23cm x 23.2cm	5
66800897	Small Sacrum 16.8cm x 17.1cm	6
66800898	Small Sacrum 16.8cm x 17.1cm	10
66801031	Large Sacrum 21.6cm x 23cm	10
66800959	Multisite 17.1cm x 17.9cm	10

References: 1. Li Z, Lin F, Thalib L, Chaboyer W. Global prevalence and incidence of pressure injuries in hospitalised adult patients: A systematic review and meta-analysis. Int J Nurs Stud. 2020;105:103546. 2. Wassel C, Delhougne G, Gayle J, et al. Risk of readmissions, mortality, and hospital-acquired conditions across hospital-acquired pressure injury (HAPI) stages in a US National Hospital discharge database. Int Wound J. 2020; 1–11. 3. Langemo DK, Melland H, Hanson D, Olson B, Hunter S. The lived experience of having a pressure ulcer: a qualitative analysis. Adv Skin Wound Care. 2000;13:225–235. 4. European Pressure Ulcer Advisory Panel, National Pressure Injury Advisory Panel and Pan Pacific Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers/Injuries: Claudeline. Emily Haesler (Ed. EPUAP/NPIAP/PPPIA: 2019. 5. International review. Pressure ulcer prevention: pressure, shear, friction and microclimate in context. A consensus document. London: Wounds International, 2010. 6. Forni C, D'Alessandro F, Gallerani P, et al. Effectiveness of using a new polyurethane foam multi-layer dressing in the sacral area to prevent the onset of pressure ulcer in the elderly with hip fractures: A pragmatic randomized con-trolled trial. Int Wound J. 2018; 15(3):383–390. 7. Smith+Nephew 2018. Pressure Redistribution Testing of ALLEVYN LIFE vs Mepilex Morder and Optifoam[™] Gentle SA. Internal report. DS/18/351/R. 8. Smith+Nephew 2016. Wound Model Testing of New ALLEVYN LIFE Gen2 wcl Dressing using Horse Serum at a Flow Rate Modelling that of a Moderately Exuding Wound. DS/14/303/R. 9. Smith+Nephew 2016. New ALLEVYN LIFE Gen2 wcl - Physical Testing. Internal report. DS/15/025/R. 10. Smith+Nephew 2016. Permeability of Hydrophillic Polyurethane Film when in contact with water and water vapour (ALLEVYN LIFE). Internal report. RD/16/019. 11. Smith+Nephew June 2016. Bacterial Barrier properties of New ALLEVYN[®] LIFE Gen 2 WCL against Serratia marcescens. Internal report. DOF 1606005. 12. Smith+Nephew 2016. Product Performance of Next Generation ALLEVYN LIFE. Internal report. (HVT080) GMCA-DOF/08. 13. Smith+Nephew 2019. Properties of ALLEVYN LIFE advanced wound care dressing that can contribute to the effective use as part of a Pressure Injury Prevention protocol. Internal report. RD/19/177. 14. Rossington A, Drysdale K, Winter R. Clinical performance and positive impact on patient wellbeing of ALLEVYN LIFE. Wounds UK. 2013;9(4):91–95. 15. Smith+Nephew 20 June 2016. A Randomised Cross-Over Clinical Evaluation to Compare Performance of ALLEVYN° LIFE and Mepilex[™] Border Dressings on Patient Wellbeing-Related Endpoints. Internal report. CE/047/ALF. 16. Viamontes L, Jones AM. Evaluation study of the properties of two adhesive foam dressings. Br J Nurs (Tissue Viability Supplement). 2003;12(11):S43–S49. 17. Clarke R. Positive patient outcomes: The use of a new silicone adhesive foam dressing for pressure ulcer prevention and treatment. Paper presented at: CAET; 2013. 18. Lisco C. Evaluation of a new silicone gel-adhesive hydrocellular foam dressing as part of a pressure ulcer prevention plan for ICU patients. Paper presented at: WOCN; 2013. 19. Joy H, Bielby A, Searle R. A collaborative project to enhance efficiency through dressing change practice. J Wound Care. 2015;24(7):312, 314–317. 20. Stephen-Haynes J, Bielby A, Searle R. The clinical performance of a silicone foam in an NHS community trust. Journal of Community Nursing. 2013;27(5):50–59. 21. Simon D, Bielby A. A structured collaborative approach to appraise the clinical performance of a new product. Wounds UK. 2014;10(3):80-87. 22. Smith+Nephew 2020. ALLEVYN LIFE Spanish Data. Internal report. MADOF011. 23. Forni C, Searle R. A multilayer polyurethane foam dressing for pressure ulcer prevention in older hip fracture patients: an economic evaluation. J Wound Care. 2020;29(2):120–127. 24. Hurd T, Gregory L, Jones A, Brown S. A multi-centre in-market evaluation of ALLEVYN GENTLE BORDER. Wounds UK. 2009;5(3):32–44. 25. Smith+Nephew 2016. ALLEVYN GENTLE BORDER Heel Gen 2 - physical evaluation. Internal report. DS/16/465/R. 26. Smith+Nephew 2017. ALLEVYN GENTLE BORDER Gen 2 - Physical Evaluation. Internal report. DS/16/424/R V3. 27. Smith+Nephew 2015. Cutting of ALLEVYN variants. Internal report. DS/14/318/R. 28. Rafter L, Reynolds T, Rafter M. An audit of patient outcomes in the management of skin tears using silicone dressings. Wounds UK. 2016;12(2):70–78. 29. Smith+Nephew 2017 An open, prospective, randomised, comparative volunteer trial to compare the performance of silicone adhesive dressings. Internal report. GMCA-DOF-10. 30. Smith+Nephew 2007. Bacterial Barrier Testing (wet-wet) on samples of ALLEVYN GENTLE, ALLEVYN GENTLE BORDER and competitor dressings with a 7 day test duration against 5. marcescens. Internal report. 0712089. 31. Smith+Nephew 2008. ALLEVYN GENTLE BORDER dressings assessment in terms of retention on thighs - HVT046. Internal report. GMCA-DOF/04. **32**. Black JM, Cuddigan JE, et al. Medical device related pressure ulcers in hospitalized patients. International Wound Journal. 2010/v0/7(5) 358–365 2. **33**. Cox J. Pressure injury risk factors in adult critical care patients: A literature review. Ostomy/Wound Manage. 2017;63(11):30–43. **34**. Labeau S, Afonso E, Benbenishty J, et al. Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study. Intensive Care Med 2021;47(2):160–9. 35. Engels D, Austin M, McNichol L, Fencl J, Gupta S, Kazi H. Pressure ulcers: factors contributing to their development in the OR. AORN J. 2016;103(3):271–281. 36. Scott S. Progress and Challenges in Perioperative Pressure Ulcer Prevention. JWOCN 2015;42(5): 480–485. 37. Munro CA. The Development of a Pressure Ulcer Risk-Assessment Scale for Perioperative Patients. AORN J. 2010;92(3):272–287. 38. Association of perioperative Registered Nurses. Prevention of Perioperative Pressure Ulcers Tool Kit. Educational slide deck: The basics of patient positioning. https://www.aorn.org/-/media/ aorn/guidelines/tool-kits/pressure-ulcer/basics-ofpositioning-patients.pptx?la=en. 39. Liu P, et al. The Incidence of Pressure Ulcers in the Emergency Department: A Meta-analysis. Wounds 2017; 29(1):14–19. 40. Denby A, Rowlands A. Stop them at the door: should a pressure ulcer prevention protocol be implemented in the emergency department? J Wound Ostomy Continence Nurs. 2010;37(1):35-8. 41. Fulbrook P. Miles S, Coyer F. Prevalence of pressure injury in adults presenting to the emergency department by ambulance. Australian Critical Care. 2019;32:509-514.