+ Evidence in focus

SmithNephew

Improved efficiencies and outcomes: the health economic value of robotics in unicompartmental knee arthroplasty (UKA)

Healthcare systems globally are challenged with providing more patients better outcomes and at a lower cost. Patients are more engaged in their episode of care and expect better outcomes than previously. Patients want a quick recovery, with good functional outcomes and a durable implant. Administrators want the same, but they also need it to be done efficiently. UKA is a surgical procedure that treats osteoarthritis in a single compartment of the knee, for patients suffering from single compartment osteoarthritis UKA is a suitable alternative to TKA, which is more invasive and requires a longer recovery time.¹

Patient satisfaction and TKA

TKA is a successful intervention for the treatment of end-stage arthritis, resulting in reductions in pain and improvements in function, whilst demonstrating long-term survivorship. **However, following TKA:**

Over 50% of patients report some degree of limitation to their functional ability at least 1-year post-operatively, including activities of daily living and sports activities²

Up to 20% of patients are not satisfied with their knee replacement³

Patient selection criteria and utilisation

Although 25–47% of patients undergoing TKA are eligible for UKA, 4 only 8–15% of all knee arthroplasties are accounted for by UKA. 5 Low utilisation of UKA is partly accounted for by surgical complexity, 6,7 reduced threshold for revision, 7 and limited patient selection criteria. 8 With low usage, the revision risk is high, and this drives surgeons to perform UKA in a narrow group of patients leading to further reduced use. 8

Robotically-assisted UKA (rUKA) and outcomes

When performed robotically, UKA provides patients with improved surgical outcomes, ⁹ irrespective of individual surgeon experience. ^{*10} Pre- and intra-operative surgical planning capabilities enable a personalised approach whilst alleviating surgical complexity. ¹¹

58% reduced risk of revision^{†12}

Compared with conventional techniques, robotic-assisted surgery has been shown to:

of implant placement

- Robotic-assisted surgery improves implant placement when compared to a conventional technique^{10,13,14}
- Robotic-assisted UKA allows surgeons of all experience levels to achieve improved accuracy¹⁰

implant survivorship‡ Aseptic loosening is a common cause of UKA revision in national joint registries¹⁵

- Accurate positioning of arthroplasty implants with robotic-assisted technology may reduce the impact of aseptic loosening, resulting in improved survivorship¹⁵
- Reduced revision rate (12 fewer revisions per 100 cases for rUKA)¹⁶

Better functional outcomes

rUKA patients have demonstrated significant improvements in functional outcomes including Knee Society Score§ (KSS) and Oxford Knee Score (OKS) over conventional unicompartmental knee arthroplasty (cUKA)^{17,18}

Smith-Nephew

Improved operating efficiencies and throughput

Increasing UKA utilisation results in several patient benefits which have been linked to improved cost efficiency versus TKA:19

- · Reduced minor and major complications
- Reduced requirement for blood transfusions
- Reduced readmission rates

A relative increase in the number of UKA versus TKA can increase the capacity for patient throughput as **UKA requires fewer bed days** per patient than TKA.²⁰

Table: Example of capacity release scenarios at a 300-knee procedure facility 120,21

	Example current situation		Scenario 1		Scenario 2	
	TKA	UKA	TKA	UKA	TKA	UKA
Case mix	90%	10%	80%	20%	70%	30%
Bed days used	1,107	78	984	156	861	234
Cost of bed days utilised	€1.06M	€75k	€944k	€150k	€826k	€224k
Capacity released (bed days)	N/A		45		90	
Additional TKAs possible	N/A		11		22	

Performance optimised with Smith+Nephew

rUKA using RI.KNEE on CORI^o Surgical System allows surgeons improved efficiency, accuracy and reproducibility compared to conventional instruments, while maintaining the extensive clinical benefits of UKA.^{13,17,22-27}

Small footprint & portability

Featuring simple calibration and a small footprint, CORI Surgical System can easily be moved between operating rooms to support demand

Improved tray efficiency (reduced tray requirement from 2-3 to 1)

JOURNEY^o II UK, when implanted using CORI Surgical System may only require a single tray to perform the surgery²⁸

Image-free workflow

CORI Surgical System uses real-time imaging, eliminating the need for pre-op imaging (e.g. MRI and CT-scan)

High survivorship

JOURNEY II UK has demonstrated excellent early clinical survivorship. A single, non-developer surgeon demonstrated 100% survivorship at two years (145 patients)²⁹

Products may not be available in all markets because product availability is subject to the regulatory and/or medical practices in individual markets. Please contact your Smith+Nephew representative or distributor if you have questions about the availability of Smith+Nephew products in your area. For detailed product information, including indications for use, contraindications, warnings and precautions, please consult the product's Instructions for Use (IFU) prior to use.

*On dry bone models. Follow-up period ranged from 3–60 months, compared to cUKA. *Compared to TKA. Patient expectations component of KSS. *Assumes average length of stay for conventional TKA (4.1 days) and and cUKA (2.6 days), and bed day cost (£799/€959), currency conversion from GBP to Euro based on January 2021 exchange rates when data captured.

Abbreviations: cUKA = conventional unicompartmental knee arthroplasty; KSS = Knee Society Score; OKS = Oxford Knee Score; <math>rUKA = robotically assisted unicompartmental knee arthroplasty; TKA = total knee arthroplasty; UKA = total knee arthroplasty; UKA = total knee arthroplasty.

References: 1. Lyons MC, et al. Clin Orthop Relat Res. 2011;470(1):84–90. 2. Noble PC, et al. Clin Orthop Relat Res. 2005;431:157–165. 3. Scott CE, et al. J Bone Joint Surg Br. 2010;92-B(9):1253–1258. 4. Wilson HA, et al. BMJ. 2019;364:1352. 5. Wills-Owen CA, et al. Knee. 2009;16(6):473–478. 6. Batailler C, et al. Knee Surg Sports Traumatol Arthrosc. 2019;27:1232–1240. 7. Keene G, et al. J Bone Joint Surg Br. 2006;88:44–48. 8. Murray DW, et al. Bone Joint J. 2018;100-b(4):432–435. 9. Chen K, et al. In: Lonner JH, editor. Robotics in Knee and Hip Arthroplasty. Springer; 2019. 10. Karia M, et al. Adv Orthop. 2013;2013:481039. 11. Jacofsky DJ, et al. J Arthroplasty. 2016;31:2353–2363. 12. Sun Y, et al. BMJ Open. 2021;11(8):e044778. 13. Herry Y, et al. Int Orthop. 2017;41:2265–2271. 14. Bollars P, et al. Eur J Orthop Surg Traumatol. 2020;30:723–729. 15. Smith+Nephew 2019. Internal Report EO/RECON/NAVIO/002/v1. 16. Yeroushalmi D, et al. J Knee Surg. 2022;35(1):39–46. 17. Crizer MP, et al. Adv Orthop. 2021;1–8. 18. Ghazal AH, et al. Cureus. 2023;15(10):e46681. 19. Suarez JC, et al. Arthroplast Today. 2022;7:114–119. 20. Wainwright TW. Ann R Coll Surg Engl. 2021;103(5):324–331. 21. Manoukian S. et al. J Hosp Infect. 2021;114:43–50. 22. Ashok Kumar PS, et al. J Robot Surg. 2024;18(1):49. 23. Negrin R, et al. Knee Surg Relat Res. 2021;33(1):5. 24. Negrin R, et al. J Exp Orthop. 2020;7(1):94. 25. Shearman AD, et al. Arch Orthop Trauma Surg. 2021;141(12):21472153. 26. Canetti R, et al. Arch Orthop Trauma Surg. 2018;138(12):1765–1771. 27. Mergenthaler G, et al. Knee Surg Sports Traumatol Arthrosc. 2021;29(3):931–938. 28. Smith+Nephew 2019. Internal Report DD0066. 29. D'Amario F, et al. J Clin Med. 2024;13(5):1303.