

CORI[◊] Surgical System clinical evidence

January 2026

[View the summary →](#)

Smith+Nephew

CORI[◊] Surgical System: Personalised knee and hip arthroplasty

CORI Surgical System uses RI.KNEE[◊] ROBOTICS software for knee arthroplasty and RI.HIP[◊] NAVIGATION for hip arthroplasty. The NAVIO[◊] Surgical System is the predecessor to the CORI Surgical System. Because both surgical systems share the same core functionality, clinical evidence generated with NAVIO is relevant to the clinical profile of CORI. Throughout this document, evidence relating to NAVIO Surgical System – or studies evaluating both systems – is referred to as evidence for Smith+Nephew handheld robotics.

Versatility with CORI Surgical System

- Enables personalisation across **unicondylar, total and revision knee arthroplasty, and total hip arthroplasty procedures**
- Accommodates a broad range of cases through **image-free or image-based pre-operative planning**
- More **compact footprint** than Mako[™] (Stryker) and ROSA[®] Robotics (Zimmer Biomet),¹ making it easy to transport between operating rooms

CORI Surgical System is redefining revision TKA: From canal-based to anatomical joint line-based reconstruction

- The **first robotics platform indicated for use in revision knee arthroplasty in the US and Europe²**
- Enabling surgeons to prioritise joint-line reconstruction** in revision TKA rather than being constrained by diaphyseal anatomy when using conventional methods²

Enabling consistent gap balancing with CORI Digital Tensioner

- An objective tool to support **consistent and repeatable** gap balancing and alignment in TKA^{3,4}

56
publications*

>49,000
total patients studied†


10 randomised controlled trials (RCTs)[‡]
1 systematic literature review (SLR) and meta-analysis
3 prospective comparative
2 registry analyses
24 retrospective comparative
10 case series/single-arm cohort
3 cost/efficiency analyses
1 modelling study

Publication counts may be higher than study counts, as individual study cohorts may have resulted in more than one publication.

Personalised TKA with RI.KNEE[◊] on CORI[◊] Surgical System

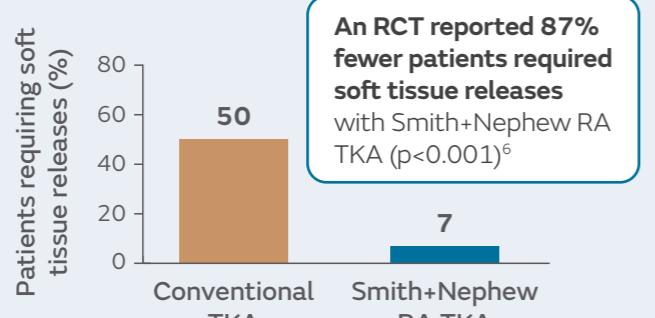
CORI Surgical System enables surgeons to execute personalised alignment TKA, including functional and kinematic alignment. Both the anatomically designed JOURNEY[◊] II TKA and the LEGION[◊] Total Knee System, which offers both cementless and cemented options, can be accurately positioned using CORI[◊] Surgical System.^{5,11} Soft tissue tension can then be assessed in real time.

Access TKA studies by clicking or scanning the QR code:

 29
publications

In RCTs, Smith+Nephew handheld robotic-assisted (RA) functional alignment TKA has outperformed conventional TKA (cTKA) for accuracy of implant and limb alignment, soft-tissue preservation, natural joint feeling and patient satisfaction, with no clinically relevant differences in procedure time.^{5,6} Real-world analyses have demonstrated OR efficiencies related to reduced instrument requirements⁷ and reduced 90-day episode of care costs versus cTKA.⁸

Compared with cTKA, Smith+Nephew RA TKA has been shown to result in:


Intra-operative and immediately post-op

More accurate bone resection and improved soft tissue preservation^{5,6,9-13}

Improved accuracy of limb and implant alignment has been demonstrated in five RCTs^{5,9-12}

RCTs have also shown significantly **improved gap balancing⁶** and reduced local trauma^{5,13}

Procedure	Patients requiring soft tissue releases (%)
Conventional TKA	50
Smith+Nephew RA TKA	7

An RCT reported 87% fewer patients required soft tissue releases with Smith+Nephew RA TKA ($p<0.001$)⁶

Post-operative

Improved natural joint feeling and patient-reported satisfaction at 1 year⁶

At 1 year, an RCT has shown significantly⁶

- More natural joint feeling (better 12-item Forgotten Joint Score)⁶
- Improved patient-reported function, pain, satisfaction and health-related quality of life¹⁶

($p\leq0.029$ for all)

Health economic

OR efficiencies and reduced costs, without a meaningful increase in procedure time^{6-8,11,13}

 RCTs have reported **no clinically relevant difference in procedure time** after an initial learning curve^{6,11,13}

OR efficiencies
In a real-world study of 9 centres:
On average, **45 fewer instruments** used per TKA, resulting in an estimated **cost saving of \$286 per procedure** ($p<0.001$)⁷

Procedure	Instruments (mean)
Conventional TKA	159
Smith+Nephew RA TKA	115

Cost analysis
An analysis of >1000 propensity-matched patients from the Premier PINC AI™ Healthcare Database reported:

 Lower 90-day episode of care costs (\$14,725 vs \$15,670; $p<0.0001$)⁸

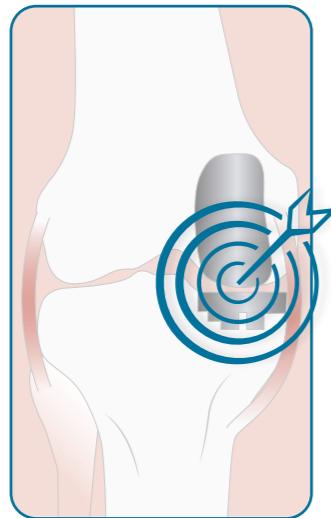
^{*}Surgery duration in Dollars (2025)⁶ was 76 minutes in the Smith+Nephew RA TKA group and 73 minutes in the conventional TKA group ($p=0.001$), authors did not consider the 3 minutes difference to be clinically relevant. [†] $p\leq0.038$ for all. [‡]Improved gap balancing defined as fewer patients required soft tissue releases and inserts >10mm thick ($p\leq0.004$). [§]Lower inflammatory marker c-reactive protein at post-op days 1 and 5; $p\leq0.0003$ in a quasi-RCT. [¶]OKS, KSS [function and satisfaction], EQ-5D index score, VAS pain and satisfaction. ^{||}Two RCTs have found no clinically relevant difference in procedure time (1.6–3mins between groups; $p\leq0.04$). ^{**}Most patients (80%) in the analysis had a TKA and 20% had a UKA.

Abbreviations: cTKA = conventional TKA, OR = operating room, RA TKA = robotic-assisted TKA, RCT = randomised controlled trial, TKA = total knee arthroplasty.

Accurate UKA with RI.KNEE[◊] on CORI[◊] Surgical System

Despite the benefits of UKA over TKA and that considerable numbers (25–47%)¹⁴ of TKA patients are eligible for the procedure, only 8–15% of all knee arthroplasties are UKA.¹⁵ Low utilisation is partly due to surgical complexity and reduced threshold for revision,¹⁶ which it may be possible to overcome using robotic-assistance to help correctly position the implant.^{16–19} CORI Surgical System assists with implantation of JOURNEY[◊] II UK with OXINIUM[◊] Technology, which has shown excellent early survivorship^{*20,21} and has a 5A ODEP rating.²²

Access UKA studies by clicking or scanning the QR code:



 18
publications

Clinical studies have shown implant placement and knee alignment is more accurate with Smith+Nephew robotic-assisted (RA) UKA than conventional UKA (cUKA),^{16–19} irrespective of surgeon experience.^{†23} The accuracy afforded by robotic-assistance is thought to contribute to the significantly lower revision risk with RA UKA versus cUKA.^{24,25} Increasing UKA utilisation results in several patient benefits which have been linked to improved cost efficiency versus TKA, including quicker discharge.²⁶

Versus cUKA, Smith+Nephew RA UKA has resulted in:

Improved accuracy,^{16–19} irrespective of surgeon experience^{†23}

Intra-operative

Improved accuracy of implant placement and knee alignment,^{16–19} irrespective of individual surgeon experience with cUKA^{†23}

Post-operative

Improved survivorship and patient-reported outcomes (PROMs) with fewer bed days^{24,25,27–31}

Versus cUKA, RA UKA has resulted in:

 Up to 58% lower revision risk (two independent meta-analyses)^{24,25}

Versus cUKA, Smith+Nephew RA UKA:

100% survivorship with JOURNEY II UK in the NJR at 1 year^{‡27} n=122

Significantly earlier discharge from hospital and physical therapy²⁸ and higher PROMs[§] (p≤0.02)^{29–31}

Health economic

Increasing UKA utilisation may lower episode of care costs

Increasing UKA utilisation results in several benefits which have been linked to improved cost efficiency versus TKA:

Lower early complication rates

Lower risk of early complications including cardiac events, venous thromboembolism and deep infections³²

Shorter length of stay and lower costs

Typically, UKA procedures are lower cost³³ and patients are discharged >1 day earlier³²

Quicker recovery

Patients may regain knee function, and return to sports and work sooner³²

Using CORI Surgical System to implant JOURNEY II UK may only require a **single tray** (versus 2–3 with cUKA)³⁴

*Up to 99.6% survivorship at 2 years; [†]Study conducted on dry bone models; [‡]The data used for this analysis was obtained from the National Joint Registry ("NJR"), part of the Hqip, the NJR and/or its contractor, NEC Software Solutions (UK) Limited ("NEC") take no responsibility (except as prohibited by law) for the accuracy, currency, reliability and correctness of any data used or referred to in this report, nor for the accuracy, currency, reliability and correctness of links or references to other information sources and disclaims all warranties in relation to such data, links and references to the maximum extent permitted by legislation including any duty of care to third party readers of the data analysis. [§]KOOS-JR at 6 months post-UKA (p=0.037)³⁰ and IKSS-O (p<0.05)²⁹ and KSS-F (p=0.01)³¹ at ≥1-year post-UKA.

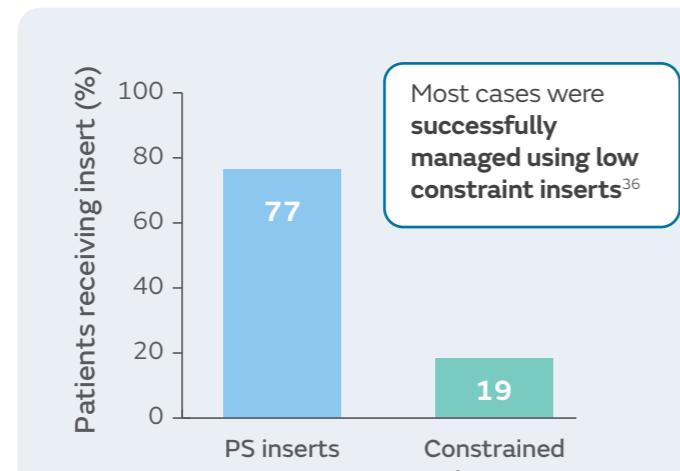
Abbreviations: cUKA = conventional UKA, RA UKA = robotic-assisted unicompartmental knee arthroplasty, ODEP = Orthopaedic Data Evaluation Panel, QALY = Quality-Adjusted Life Year, TKA = total knee arthroplasty, UKA = unicompartmental knee arthroplasty.

Redefined revision TKA with RI.KNEE[◊] on CORI[◊] Surgical System: Restoring the anatomical joint line

CORI Surgical System enables real-time visualisation of anatomical landmarks to help with augment planning and to allow old and new joint line parameters to be established. To ease transitions from primary to revision, LEGION[◊] Primary and Revision Knee Systems share the same bone conserving* femoral resections³⁵ and include a full continuum of revision dedicated instrumentation.

Access revision TKA studies by clicking or scanning the QR code:

 2
publications


As the first robotics platform indicated for use in revision TKA (rTKA), CORI Surgical System has enabled a shift toward reconstructing the joint based on native anatomy, rather than conforming to the geometry of the diaphyseal canal.² This approach facilitates precise restoration of joint line height and orientation.² A clinical study of CORI Surgical System with LEGION Revision Knee System reported 93% of rTKA patients' joint line was restored to that of the contralateral knee.³⁶

Achieving joint line restoration

In a retrospective case series of CORI Surgical System with LEGION RK System for 115 rTKA patients:³⁶

93% achieved joint line restoration[†]
(across a wide range of cases)³⁶

Intra-operative

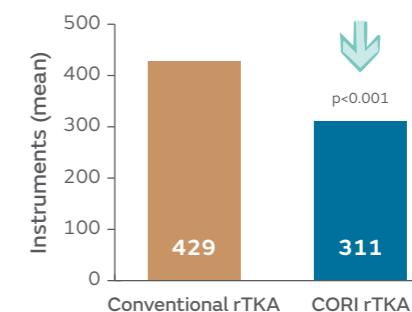
Post-operative

Early evidence suggests improved PROMs[‡] and high home discharge rates

In a retrospective case series of CORI Surgical System with LEGION RK System for 115 rTKA patients:³⁶

Significantly improved pain and PROMIS depression scores (versus pre-op scores at 90 days post-op; $p \leq 0.013$)³⁶

Low readmissions at 30 (1%) and 90 days (3%) post-op³⁶


87% patients discharged home³⁶

Health economic

OR efficiencies and reduced costs versus conventional rTKA

In a real-world study of CORI Surgical System in 9 centres:

On average, **118 fewer instruments** used per rTKA, resulting in an estimated **cost saving of \$753 per procedure** ($p < 0.001$)⁷

*Bone conserving versus Insall-BursteinTM II, PFCTM SigmaTM, OptitrakTM, and Nex-GenTM LegacyTM; [†]Within 5mm of the native contralateral knee; [‡]at 30 and 90 days post-op, versus pre-op scores.

Abbreviations: PS = Posterior Stabilised; rTKA = revision total knee arthroplasty.

Personalised THA with RI.HIP[◊] on CORI[◊] Surgical System

Although THA is a highly successful surgery, dislocation remains a leading cause of revision and is often caused by impingement.³⁷ Implant malpositioning and reduced spinopelvic mobility have been shown to increase impingement risk and dislocation,³⁸⁻³⁹ highlighting the importance of accounting for spinopelvic mobility and optimal implant positioning for THA success.

Access THA studies by clicking or scanning the QR code:

 7 publications

CORIOGRAPH[◊] Pre-Op Planning and Modeling services enables personalised pre-operative planning based on patient spinopelvic mobility in the context of activities of daily living (ADLs) to help minimise impingement risk.⁴⁰ Clinical studies have shown, versus conventional THA, navigated THA with RI.HIP supports optimal implant placement⁴¹ and significantly improves impingement-free range of motion⁴²⁻⁴⁴ and revision risk at 10 years.⁴⁵

Pre-operative

CORIOGRAPH Pre-Op Planning and Modelling services for hips

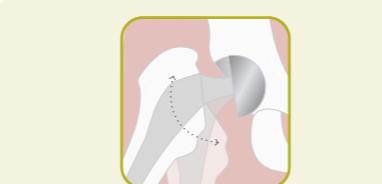
Personalised THA pre-op planning that operates with 2D (X-ray) and/or 3D (CT) images

Advanced modeling capabilities that go beyond the mechanics of range of motion to **offer 12 ADLs**

Allows pre-operative **assessment of spinopelvic condition with ADLs** to help mitigate impingement risk⁴⁰

Intra-operative

Optimised implant placement and accuracy


Significantly **reduced deviation from target** component positioning ($p<0.001$)⁴¹

Post-operative

Improved impingement-free ROM, revision risk and patient satisfaction

When used with Smith+Nephew acetabular components:

Significantly **improved impingement-free ROM** ($p\leq 0.05$)⁴²⁻⁴⁴

Significantly **lower revision risk at 10 years** (1.06 vs 3.88%; $p=0.005$)⁴⁵

Significantly **higher patient satisfaction** ($p=0.003$)⁴⁵

References

1. Smith+Nephew 2020. Comparison of operating room footprint for robotic-assisted knee arthroplasty systems. Internal Report. EO.REC.PCS015.002.v1.
2. Innocenti M, Leggieri F, Wong Chung D, van Laarhoven SN, van Hellemond GG. Technology-assisted revision total knee arthroplasty: current state, surgical technique and future perspectives. *MO J Eur.* 2025;1:32–48.
3. Smith+Nephew 2022. Tensioner whitepaper supporting evidence report. 10073166 REV A.
4. Smith+Nephew. CORI TENSIONER. 2020.04 study cases preliminary analysis report REV B.
5. Bollars P, Janssen D, De Weerd W, et al. Improved accuracy of implant placement with an imageless handheld robotic system compared to conventional instrumentation in patients undergoing total knee arthroplasty: a prospective randomized controlled trial using CT-based assessment of radiological outcomes. *Knee Surg Sports Traumatol Arthrosc.* 2023;31:5446–5452.
6. Bollars P, Nathwani D, Albelooshi A, et al. Imageless handheld robotic-assisted total knee arthroplasty showed better clinical outcomes than conventional total knee arthroplasty: A randomized controlled trial with preliminary results at 1-year follow up. *Knee.* 2025;56:232–240.
7. Burkhardt J, Chow J, Antell N, et al. Operating room and sterilization efficiencies for total, revision and unicompartmental knee arthroplasty using a handheld robotic-assisted surgical system. Poster MT2 presented at: ISPOR 2024; May 5–8, 2024; Atlanta, GA, USA. Published abstract: *Value Health.* 2024;27:S281. Abstract available at: [Value in Health](#)
8. Nherera L. Handheld robotically assisted primary unilateral total knee arthroplasty (R-TKA) demonstrates lower short-term costs and length of stay compared to conventional instrumentation (C-TKA). Poster MT44 presented at: ISPOR; May 5–8, 2024; Atlanta, GA, USA. Published abstract: *Value Health.* 2024;27:S289–S290. Abstract available at: [Value in Health](#)
9. Adamska O, Modzelewski K, Szymczak J, et al. Robotic-assisted total knee arthroplasty utilizing NAVIO, CORI imageless systems and manual TKA accurately restore femoral rotational alignment and yield satisfactory clinical outcomes: a randomized controlled trial. *Medicina (Kaunas).* 2023;59.
10. Khuangsirikul S, Popuk S, Heebthamai D, Phruetthiphat O, Chotanaphuti T. Comparison between image-free robotic assisted and conventional total knee arthroplasty: postoperative CT assessment of alignment. *J Southeast Asian Med Res.* 2020;4:16–23.
11. Thiengwittayaporn S, Uthaitas P, Senwiruch C, Hongku N, Tunyasuwanakul R. Imageless robotic-assisted total knee arthroplasty accurately restores the radiological alignment with a short learning curve: a randomized controlled trial. *Int Orthop.* 2021;45:2851–2858.
12. Vaidya N, Deshpande AN, Panjwani T, Kesarkar A, Jaysingani TN, Patil R. Robotic-assisted TKA leads to a better prosthesis alignment and a better joint line restoration as compared to conventional TKA: a prospective randomized controlled trial. *Knee Surg Sports Traumatol Arthrosc.* 2022;30:621–626.
13. Migliorini F, Schäfer L, Schneider J, et al. Perioperative comparison between robotic-assisted and freehand total knee arthroplasty. *Orthopädie.* 2026;55:48–54.
14. Wilson HA, Middleton R, Abram SGF, et al. Patient relevant outcomes of unicompartmental versus total knee replacement: systematic review and meta-analysis. *BMJ.* 2019;364:l352.
15. Willis-Owen CA, Brust K, Alsop H, Miraldo M, Cobb JP. Unicondylar knee arthroplasty in the UK National Health Service: an analysis of candidacy, outcome and cost efficacy. *Knee.* 2009;16(6):473–478.
16. Batailler C, White N, Ranaldi FM, Neyret P, Servien E, Lustig S. Improved implant position and lower revision rate with robotic-assisted unicompartmental knee arthroplasty. *Knee Surg Sports Traumatol Arthrosc.* 2019;27(4):1232–1240.
17. Negrin R, Duboy J, Reyes NO, et al. Robotic-assisted unicompartmental knee arthroplasty optimizes joint line restitution better than conventional surgery. *J Exp Orthop.* 2020;7:94.
18. Negrin R, Duboy J, Iñiguez M, et al. Robotic-assisted vs conventional surgery in medial unicompartmental knee arthroplasty: a clinical and radiological study. *Knee Surg Relat Res.* 2021;33:5.
19. Herry Y, Batailler C, Lording T, Servien E, Neyret P, Lustig S. Improved joint-line restitution in unicompartmental knee arthroplasty using a robotic-assisted surgical technique. *Int Orthop.* 2017;41:2265–2271.
20. D'Amario F, Vitale U, De Dona F, Ruosi L, Cofone A, Loppini M. Evaluation of functional outcomes, survivorship and complications of hypoallergenic fixed-bearing medial and lateral unicompartmental knee arthroplasty: a minimum 2-year follow-up. *J Clin Med.* 2025;14(5):1748.
21. Fricka KB, Strait AV, Ho H, Hopper RH Jr, McAsey CJ. Early outcome of a contemporary unicondylar knee system. *Cureus.* 2024;16(11):e74596.
22. Orthopaedic Data Evaluation Panel (ODEP). Available at: <http://www.odep.org.uk>. Accessed October 21, 2025.
23. Karia M, Masjedi M, Andrews B, Jaffry Z, Cobb J. Robotic assistance enables inexperienced surgeons to perform unicompartmental knee arthroplasties on dry bone models with accuracy superior to conventional methods. *Adv Orthop.* 2013;2013:481039.
24. Sun Y, Liu W, Hou J, Hu X, Zhang W. Does robotic-assisted unicompartmental knee arthroplasty have lower complication and revision rates than the conventional procedure? A systematic review and meta-analysis. *BMJ Open.* 2021;11(8):e044778.
25. Bensa A, Sangiorgio A, Deabate L, Illuminati A, Pompa B, Filardo G. Robotic-assisted unicompartmental knee arthroplasty improves functional outcomes, complications, and revisions: a systematic review and meta-analysis. *Bone Jt Open.* 2024;5(5):374–384.
26. Maman D, Mahamid A, Yonai Y, Berkovich Y. Comparing complication rates, costs, and length of stay between unicompartmental and total knee arthroplasty: insights from a big data analysis using the National Inpatient Sample dataset. *J Clin Med.* 2024;13(13):3888.

References (continued)

27. National Joint Registry for England, Wales and Northern Ireland: JOURNEY II UK Unicondylar (Robotics) bespoke implant summary report. 09 April 2025. Copy available upon request.
28. Shearman AD, Sephton BM, Wilson J, Nathwani DK. Robotic-assisted unicompartmental knee arthroplasty is associated with earlier discharge from physiotherapy and reduced length-of-stay compared to conventional navigated techniques. *Arch Orthop Trauma Surg.* 2021;141:2147–2153.
29. Canetti R, Batailler C, Bankhead C, Neyret P, Servien E, Lustig S. Faster return to sport after robotic-assisted lateral unicompartmental knee arthroplasty: a comparative study. *Arch Orthop Trauma Surg.* 2018;138:1765–1771.
30. Crizer MP, Haffar A, Battenberg A, McGrath M, Sutton R, Lonner JH. Robotic assistance in unicompartmental knee arthroplasty results in superior early functional recovery and is more likely to meet patient expectations. *Adv Orthop.* 2021;2021:4770960.
31. Mergenthaler G, Batailler C, Lording T, Servien E, Lustig S. Is robotic-assisted unicompartmental knee arthroplasty a safe procedure? A case control study. *Knee Surg Sports Traumatol Arthrosc.* 2021;29:931–938.
32. Wilson HA, Middleton R, Abram SGF, et al. Patient relevant outcomes of unicompartmental versus total knee replacement: systematic review and meta-analysis. *BMJ.* 2019;364:l352.
33. Maman D, Mahamid A, Yonai Y, Berkovich Y. Comparing complication rates, costs, and length of stay between unicompartmental and total knee arthroplasty: insights from a big data analysis using the National Inpatient Sample dataset. *J Clin Med.* 2024;13:3888.
34. Smith+Nephew 2019. Internal Report DD0066.
35. Haas SB, Nelson CL, Laskin RS. Posterior stabilized knee arthroplasty: an assessment of bone resection. *Knee.* 2000;7:25–29.
36. Cochrane NH, Kim BI, Stauffer TP, et al. Revision total knee arthroplasty with an imageless, second-generation robotic system. *J Arthroplasty.* 2024;39(8S1):S280-S284.
37. Toyoda T, Oe K, Lida H, Nakamura T, Okamoto N, Saito T. Treatment strategies for recurrent dislocation following total hip arthroplasty: relationship between cause of dislocation and type of revision surgery. *BMC Musculoskelet Disord.* 2023;24:238.
38. Louette S, Wignall A, Pandit H. Spinopelvic relationship and its impact on total hip arthroplasty. *Arthroplasty Today.* 2022;17:87–93.
39. Zagra L, Benazzo F, Dallari D, et al. Current concepts in hip–spine relationships: making them practical for total hip arthroplasty. *EFORT Open Rev.* 2022;7(1):59–69.
40. Navvacchia A, Davis ET, Waddel B, Duncan S, Seyler T. How does THA impingement risk during activities of daily living change with pelvic tilt and spinopelvic mobility? Presented at: International Society for Technology in Arthroplasty 2024 35th International Congress; August 28–31; Nashville TN, USA.
41. Naito Y, Hasegawa M, Tone S, Wakabayashi H, Sudo A. The accuracy of acetabular cup placement in primary total hip arthroplasty using an image-free navigation system. *BMC Musculoskelet Disord.* 2021;22:1016.
42. Palit A, Williams MA, Turley GA, Renkawitz T, Weber M. Femur first navigation can reduce impingement severity compared to traditional free hand total hip arthroplasty. *Sci Rep.* 2017;7:7238.
43. Weber M, Woerner ML, Sendtner E, Völlner F, Grifka J, Renkawitz TF. Even the intraoperative knowledge of femoral stem anteversion cannot prevent impingement in total hip arthroplasty. *J Arthroplasty.* 2016;31(11):2514–2519.
44. Renkawitz T, Weber M, Springorum HR, et al. Impingement-free range of movement, acetabular component cover and early clinical results comparing 'femur-first' navigation and 'conventional' minimally invasive total hip arthroplasty: a randomised controlled trial. *Bone Joint J.* 2015;97-B(7):890–898.
45. Davis ET, McKinney KD, Kamali A, Kuljaca S, Pagkalos J. Reduced risk of revision with computer-guided versus non-computer-guided THA: an analysis of manufacturer-specific data from the National Joint Registry of England, Wales, Northern Ireland and the Isle of Man. *JBJS Open Access.* 2021;6(1):e21.00006.

We thank the patients and staff of all the hospitals in England, Wales and Northern Ireland who have contributed data to the National Joint Registry. We are grateful to the HQIP, the NJR Steering Committee and staff at the NJR Centre for facilitating this work. The views expressed represent those of the authors and do not necessarily reflect those of the NJR Steering Committee or the HQIP, who do not vouch for how the information is presented.

Products may not be available in all markets because product availability is subject to the regulatory and/or medical practices in individual markets. Please contact your Smith+Nephew representative or distributor if you have questions about the availability of Smith+Nephew products in your area. For detailed product information, including indications for use, contraindications, warnings and precautions, please consult the product's Instructions for Use (IFU) prior to use.