# Rotator cuff repair

An evidence based look at Advanced Healing Solutions

**Smith**<br/>Nephew

### Age is the dominant risk factor for rotator cuff re-tear<sup>1</sup>

- Re-tear rates have been shown to double in the 50-59 age bracket compared to those below  $50^{\circ}$
- Bone mineral density, which is known to decrease with age, also correlates with re-tear rate<sup>3</sup>



Figure: Graph of age vs. retear rate. The risk of retear doubled from 15% at age 50 years to >30% at age 70 years.<sup>4</sup>



#### Patients who undergo revision rotator cuff surgery can be twice as likely to have a re-tear compared to those undergoing primary repair\*<sup>5</sup>

- A meta-analysis has shown patients with re-tear have significantly poorer function than those without re-tear  $(p{<}0.001)^6$
- Following a revision surgery, patients experience increased pain, weaker strength and motion and have lower satisfaction with shoulder function compared to those undergoing primary repair surgery<sup>5</sup>



**Figure:** Intact repairs (%) for primary and revision surgery at 6 months and 2 years<sup>5</sup> \*n=310, primary; n=50, revision



#### Repair constructs can specifically address osteopenic bone<sup>7,8</sup> associated with patients over 50<sup>3</sup>

 Open architecture anchors have been shown to increase bone density surrounding the anchor<sup>9</sup> and potentially improve healing potential<sup>10</sup>



- In a model of osteporotic bone, open architecture anchors had a significantly greater failure load compared to standard anchors<sup>7</sup> (p < 0.05)
- Knotless anchors with an internal suture locking mechanism perform consistently and may be advantageous in osteopenic bone<sup>8</sup>



Figure: Bone density at, and up to 2.50mm away from, the surface of an open architecture anchor and a standard anchor on 6-month CT scans. \*=p<0.01, †=p<0.05.<sup>6</sup> Figure: Mean load to failure (N) of PEEK open architecture and standard anchors in 5-pcf Sawbone. Statistical significance (p<0.05) vs \* 4.5mm and \$ 5.5mm open architecture anchors<sup>7</sup>

## Advanced healing solutions

### The HEALICOIL° Family of suture anchors is redefining healing potential for rotator cuff repair

- The HEALICOIL anchor family features an open architecture design which allows bone to interdigitate within the thread profile
- Superior bone growth has been demonstrated at 6 months compared to solid anchors; this may contribute to higher pullout strength and offer the potential for reduced failure<sup>9</sup>
- Treatment of patients with a HEALICOIL Suture Anchor resulted in a greater rotator cuff thickness at 6 weeks post op compared to those treated with a non-vented anchor  $^{10}$
- The HEALICOIL KNOTLESS anchor features an internal locking mechanism , the suture is securely locked in place providing an additional point of fixation\*<sup>11</sup>





Smith & Nephew Pty Ltd Australia T +61 2 9857 3999 F +61 2 9857 3900 **smith-nephew.com/australia**  Smith & Nephew Ltd New Zealand T +64 9 820 2840 F +64 9 820 2841 smith-nephew.com/new-zealand °Trademark of Smith+Nephew. All trademarks acknowledged. ©2021 Smith+Nephew. All rights reserved. 30312-anz V1 06/21 For detailed product information, including indications for use, contraindications, precautions and warnings, please consult the product's applicable Instructions for Use (IFU) prior to use.

#### References

1. Rashid MS, Cooper C, Cook J et al. Increasing age and tear size reduce rotator cuff repair healing rate at 1 year. Data from a large randomized controlled trial. Acta Orthopaedica. 2017; 88(6):606-611. 2. Diebold G, Lam P, Walton J et al. Relationship between age and re-tear rate. A study of 1600 consecutive rotator cuff repairs. J Bone Joint Surg. 2017;99:1198-205. 3. Kwon J, Hoon Kim S, Hyn Lee Y et al. The Rotator Cuff Healing Index: A New Scoring System to Predict Rotator Cuff Healing After Surgical Repair. Am J Sports Med. 2019;47(1):173-180. 4. Khazzam M, Sager B, Box H et al. The effect of age on risk of re-tear after rotator cuff repair: a systematic review and meta analysis. J Shoulder Elb Surg. 2020;4:625-631. 5. Shamsudin A, Lam P, Peters K et al. Revision versus primary surgery arthroscopic rotator cuff repair: a 2 year analysis of outcomes in 360 patients. Am J Sports Med. 2014;43(3). 6. Yang J, Robbins M, Reilly J at al. The clinical effect of a rotator cuff repair soft arthroscopic single row and double row repairs. Am J Sports Med. 2017;45(3):733-41 7. Yamauchi S, Tsukada H, Sasaki E et al. Biomechanical analysis of bioabsorbable suture anchors for rotator cuff repair using osteoporotic and normal bone models. J. Orthop Sci, 2021. 8. Woodmass JM, Mathewson G, Ono Y et al. Suture locking of isolated internal locking knotless suture anchors for tour cuff repair: A randomized controlled trial. Arthroscopy. 2020;36(4):952-961. 10. Clark TR, Guerrero EM, Song A, O'Brien MJ and Savoie FH. Do vented suture anchors make a difference in rotator cuff healing. Ann Sport Med Res. 2016;3(3):1068. 11. Data on file at Smith+Nephew, internal report no. 15009718, 2020