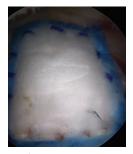


Changing the course of rotator cuff disease

Rotator cuff disease is a significant and costly problem²⁻⁴ that causes ongoing pain and limits patients' mobility.⁵ Progressive in nature, small tears tend to grow in size and severity over time, eventually requiring surgery.¹⁻³

- Up to 80% of partial-thickness tears increase in size within two years⁶
- Untreated rotator cuff tendinosis can progress to a partial- or full-thickness tear⁷
- Larger tears requiring surgery tend to re-tear over 40% of the time8-10

Now you can disrupt rotator cuff disease progression biologically¹


The REGENETEN Bioinductive Implant stimulates the body's natural healing response to support new tendon growth and disrupt disease progression.^{1,2} Derived from highly purified bovine Achilles tendon, it creates an environment that is conducive to healing.^{1,2}

Biologically improve healing

- Proprietary, highly porous implant design facilitates the formation of new tendonlike tissue^{1,2}
- New tissue reduces the peak strain at the site of the tear¹¹
- Gradually absorbs within 6 months and leaves a layer of new tendon-like tissue to biologically augment the existing tendon¹²

Arthroscopic view of rotator cuff tear

Implant in situ

12 months post-op

Demonstrated clinical efficacy

- Induction of new tendonlike tissue in all patients (N=33)
- Mean increase of tendon thickness of 2.2 mm (P < 0.0001) at 3 months
- Potentially reduce re-tears¹³

Excellent safety profile

- No foreign body/ inflammatory reaction
- -No implant-related complications

Impressive patient outcomes

- High patient satisfaction (94%) after 1 year
- Rapid recovery: average 23 days of sling time
- Significantly improved ASES pain score at 1 year (P < 0.0001)‡

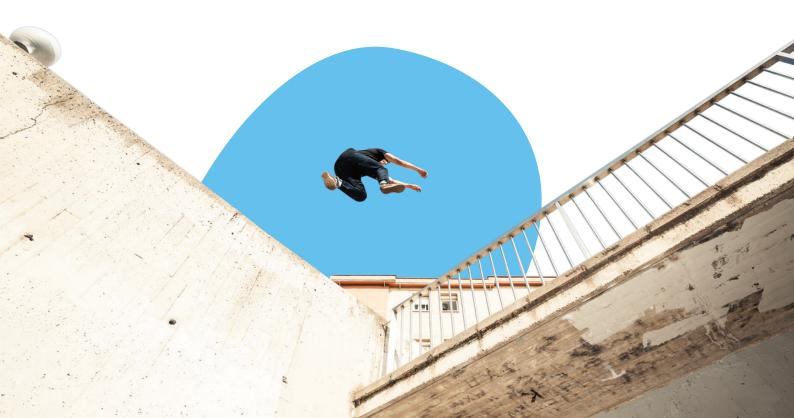
Natural progression of rotator cuff disease

Severe Tendinosis/
Low-Grade Partial-Thickness Tears
(Failed Conservative Treatment)

In conjunction with subacromial decompression (SAD)

High-Grade Partial-Thickness Tears

In lieu of standard repair


Full-Thickness Tears

In conjunction with standard repair

REGENETEN Bioinductive Implant

*Results from a prospective multi-center study of patients with partial-thickness tears. Patients had chronic, degenerative, intermediate grade (n=12) or high grade (n=21) partial-thickness tears of the supraspinatus tendon. The REGENETEN Bioinductive Implant was attached following arthroscopic subacromial decompression without repair. Clinical outcomes were assessed pre-op and at 3 and 12 months post-op using American Shoulder and Elbow Surgeons (ASES) and Constant-Murley (CM) scores. Post-op tendon healing and thickness was assessed with MRI.

 \pm ASES pain score improved from 4.2 \pm 0.4 standard error of mean (SEM) at baseline to 0.6 \pm 0.2 (SEM) at 1 year.

Ordering information

Implants	
Reference #	Description
72205306	Medium Bioinductive Implant with Arthroscopic Delivery (1)
72205307	LargeBioinductive Implant with Arthroscopic Delivery (1)
Anchors	
Reference #	Description
72205205	Bone Anchors (3) with Arthroscopic Delivery System
72205201	Tendon Anchors (8)
Accessory Devices	
Reference #	Description
72205202	Tendon Marker (2)
72205206	Tendon Stabilizing Guide (1)
72205199	Bone Anchor (1)

Smith & Nephew Pty Ltd Smith & Nephew Ltd www.smith-nephew.com/australia Australia New Zealand www.smith-nephew.com/new-zeal

T +61 2 9857 3999 F +61 2 9857 3900

New Zealand T +64 9 820 2840 F +64 9 820 2841 www.snitt-nephew.com/new-zealand °Trademark of Smith+Nephew. All trademarks acknowledged. 13508-anz V4 08/21

For detailed product information, including indications for use, contraindications, precautions and warnings, please consult the product's applicable Instructions for Use (IFU) prior to use.

References

1. Schlegel TF, Abrams JS, Bushnell BD, Brock JL, Ho CP. Radiologic and clinical evaluation of a bioabsorbable collagen implant to treat partial-thickness tears: a prospective multicenter study. JShoulder Elbow Surg. 2017.doi:http://dx.doi.org/10.1016/j.jse.2017.08.023. 2. Bokor DJ, Sonnabend D, Deady Let al. Evidence of healing of partial-thickness rotator cuff tears following arthroscopic augmentation with a collagen implant: a 2-year MRI follow-up. MLTJ. 2016;6(1):16-25. 3. Washburn R, Anderson TM, Tokish JM. Arthroscopic rotator cuff augmentation: Surgical technique using bovine collagen bioinductive implant. Arthroscopy Techniques. 2017;6(2):e297-e301. 4. Mather RC, Koenig L, Acevedo Det al. The societal and economic value of rotator cuff repair. J Bone Joint Surg Am. 2013;95:1993-2000. 5. Lin JC, Weintraub N, Aragaki DR. Nonsurgical treatment for rotator cuff injury in the elderly. Am Med Dir Assoc. 2008;9(9):626-32. doi: 10.1016/j.jamda.2008.05.003. 6. Yamanaka K and Matsumoto T. The joint side tear of the rotator cuff: A followup study by arthrography. Clinical Orthopaedics and Related Research. 1994: 304,68-73. 7. Keener JD, Galatz LM, Teefey SA et al. A prospective evaluation of survivorship of asymptomatic degenerative rotator cuff tears. J Bone Joint Surg Am. 2015;97:89-98. 8. Bishop J, Klepps S, Lo IK, Bird J, Gladstone JN, Flatow EL. Cuff integrity after arthroscopic versus open rotator cuff repair: A prospective study. J Shoulder Elbow Surg. 2006;15(3):290-299. 9. Heuberer PR, Smolen D, Pauzenberger L et al. Longitudinal long-term magnetic resonance imaging and clinical follow-up after single-row arthroscopic rotator cuff repair. Am J Sports Med. 2017;45(6):1283-1288. 10. Henry P, Wasserstein D, Park S, et al. Arthroscopic repair for chronic massive rotator cuff tears: A systematic review. Arthroscopy. 2015;31(12):2472-80. 11. Chen Q. Proof-of-concept finite element modelling of effect of tissue induction on rotator cuff tears. Material and Structural Testing Core, Mayo Clinic, Rochester, MN, 201